Press "Enter" to skip to content

3D Rock Stars: Stereoscopic Images From NASA’s OSIRIS-REx Sampling Head

These stereoscopic images are a pair of close-ups of ancient asteroid Bennu material retrieved by NASA’s OSIRIS-REx mission and delivered to Earth on September 24, 2023. The material is on top of the TAGSAM (Touch-and-Go Sample Acquisition Mechanism), the instrument used to collect the sample from the asteroid in 2020. The sample and TAGSAM are currently in a clean room within the Astromaterials Curation Facility at NASA’s Johnson Space Center in Houston. Credit: Erika Blumenfeld, Joseph Abersold for the original images/Brian May, Claudia Manzoni for stereo processing of the images.

NASAEstablished in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is "To discover and expand knowledge for the benefit of humanity." Its core values are "safety, integrity, teamwork, excellence, and inclusion." NASA conducts research, develops technology and launches missions to explore and study Earth, the solar system, and the universe beyond. It also works to advance the state of knowledge in a wide range of scientific fields, including Earth and space science, planetary science, astrophysics, and heliophysics, and it collaborates with private companies and international partners to achieve its goals.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>NASA’s OSIRIS-RExLaunched in 2016, the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft will help astronomers investigate how planets formed and how life began, as well as improve our understanding of near-Earth asteroids.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>OSIRIS-REx mission, while not initially intended for stereoscopic imaging, benefited from the expertise of Brian May and Claudia Manzoni, who utilized the mission’s vast visual data to create 3D images of asteroid Bennu.

Making stereoscopic images of asteroid Bennu was not part of the brief of NASA’s OSIRIS-REx mission; but we civilians, Claudia Manzoni and myself (Brian May, Queen guitarist and astrophysicist), were invited by mission principal investigator Dante Lauretta to join the science team and find opportunities for stereoscopy in the wealth of visual data acquired by the spacecraft’s cameras at Bennu.

To do this, we looked for pairs of images of Bennu’s surface taken from viewpoints some distance apart. This separation of viewpoints, known as the “baseline,” has to be just right to give us the experience of depth and reality when the images are viewed stereoscopically. Such viewing requires the left and right images to be delivered separately to our left and right eyes, which is how we see in “real life.” When this is done, the small differences between the components of the stereo pair – known as parallax differences – give our brains the opportunity to instantaneously perceive depth and solidity in the image.

In the case of the images shown here, with the Bennu sample safely delivered to planet Earth, the curation team made it easy for us.  In the moments when the TAGSAM head was flipped over after removing it from the avionics deck at NASA’s Johnson Space Center in Houston, photographs from many angles were captured, enabling us to find just one (nearly!) perfect pair, showing the intimate structure of just a few grains of the dark, coal-black sample.

It’s possible to view this side-by-side stereoscopic pair without a stereoscope, by relaxing the axes of the eyes, as if staring through the screen to infinity.  But the best experience will be had by using a stereoscope, the same way the OSIRIS-REx mission team viewed our stereo images while the search was on to find a safe spot on asteroid Bennu’s surface for the delicate Touch-and-Go sampling maneuver.

The largest “boulders” in this picture are about 1 centimeter across. Enjoy this piece of history in the making!

Source: SciTechDaily