Press "Enter" to skip to content

A New Way To Destroy “Forever Chemicals”

The new method can destroy both PFOA and PFOS, two of the most common forever chemicals.

University of Washington researchers have developed a reactor that can destroy “forever chemicals.”

“Forever chemicals,” so termed because of their ability to persist in water and soil, are a kind of molecule that is ubiquitous in our everyday lives, including food packaging and household cleaning goods. These chemicals may cause health problems like cancer or impaired fertility since they don’t degrade and wind up in our water and food.

The US Environmental Protection Agency suggested this month to designate PFOA and PFOS, two of the most common forever chemicals, as “superfunds” which would make it easier for the EPA to monitor them and organize cleanup operations.

Reactors Before Assembly

University of Washington researchers have created a reactor that can completely break down hard-to-destroy chemicals. Shown here are two reactors before they are assembled. Credit: Igor Novosselov/University of Washington

Cleanups would certainly be more effective if the forever chemicals could be destroyed during the process, and several researchers have been researching ways to do so. A team of researchers from the University of Washington has created a new technique for destroying both PFOA and PFOS. The researchers developed a reactor that can completely break down difficult-to-destroy chemicals by employing “supercritical water,” which is formed at high temperatures and pressure. This method might aid in the treatment of industrial waste, the destruction of concentrated forever chemicals currently present in the environment, and the disposal of old stocks, such as the forever chemicals in fire-fighting foam.

The team recently published their findings in the Chemical Engineering Journal.

Senior author Igor Novosselov, a UW research associate professor of mechanical engineering, answered some questions about his research. 

Igor Novosselov

Igor Novosselov. Credit: Igor Novosselov/University of Washington

What is supercritical water and how can it destroy these molecules?

Igor Novosselov: Our reactor basically heats water very fast, but it heats water differently than when you boil it for pasta. Typically, when you raise the temperature, water boils and turns to steam. From there, the water and steam do not get hotter than 100 degrees CelsiusThe Celsius scale, also known as the centigrade scale, is a temperature scale named after the Swedish astronomer Anders Celsius. In the Celsius scale, 0 °C is the freezing point of water and 100 °C is the boiling point of water at 1 atm pressure.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Celsius (212 F).

But if you compress water, you can shift that equilibrium and get that boiling point at much hotter temperatures. If you increase the pressure, the boiling temperature increases. At one point, the water will not transition from liquid to vapor. Instead, you’ll hit a critical point where water will reach a different state of matter, called the supercritical phase. Here water is not a liquid or a gas. It’s something between, and the lines are kind of fuzzy there. It’s something like a plasmaPlasma is one of the four fundamental states of matter, along with solid, liquid, and gas. It is an ionized gas consisting of positive ions and free electrons. It was first described by chemist Irving Langmuir in the 1920s.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>plasma where the water molecules become like ionized particles. These partially dissociated molecules bounce around at high temperatures and high speeds. It is a very corrosive and chemically aggressive environment in which organic molecules cannot survive.

Chemicals that survive forever in normal water, such as PFOS and PFOA, can be broken down in supercritical water at a very high rate. If we get the conditions right, these recalcitrant molecules can be completely destroyed, leaving no intermediate products and yielding only harmless substances, such as carbon dioxide, water, and fluoride salts, which are often added to municipal water and toothpaste.

How did you get started designing this reactor?

IN: We originally designed it to break down chemical warfare agents, which are also really hard to destroy. It took us five years to make the reactor. There were significant questions such as, how do we keep things at that pressure? Inside the reactor, the pressure is 200 times higher than at sea level. Another question we had was: How do we ensure that the reactor ignites and operates at a designated temperature in continuous mode? It became an engineering project, but after all, we’re engineers.

How does the reactor work?

IN: The whole thing is inside a thick stainless steel pipe about a foot long and an inch in diameter. We can vary the temperature inside to figure out how hot we need to go to completely destroy a chemical. Some chemicals require 400 C (752 F), and some 650 C (1202 F).

At the top of the reactor, we continuously inject pilot fuel, air, and the chemical we want to destroy, for example, PFOS, into the supercritical water. The fuel provides the necessary heat for the mixture to remain supercritical, and the PFOS rapidly mixes with this aggressive media. Overall the reaction time is less than a minute. At the bottom of the reactor, the mixture is cooled down to yield both liquid and gas discharge. We can analyze what’s in both the liquid and the gas phases to measure whether we’ve destroyed the chemical.

What did you find?

IN: We did the same experiment with PFOS and PFOA because both are regulated by the EPA. We saw that PFOA goes away at mild supercritical conditions (around 400 degrees C, or 750 F), but PFOS doesn’t. It took until we reached 610 degrees C (1130 F) to see the destruction of PFOS. At that temperature, PFOS and all intermediates were destroyed — in a matter of 30 seconds.

At lower temperatures, PFOS experiments showed the formation of a variety of intermediate molecules, including PFOA. Some of these breakdown products came out in the liquid phase, which means they could be present in wastewater at manufacturing sites that use forever chemicals. But other intermediates are coming out in the gas phase, which is problematic because gas emissions are not typically regulated. These molecules contain the element fluorine, and we know these types of gases contribute to greenhouse effects. Right now, we don’t have a way to monitor gas pollution in real-time, and we do not know how much we would produce or even their exact chemical composition.

What’s next for this project?

IN: We have a few next steps. We’ve been using the reactor to see how well it destroys other forever chemicals besides PFOS and PFOA. We’re also assessing how well this technology could work for real-world scenarios. You probably cannot treat the whole ocean like this, for example. But we could possibly use this to treat existing problems, such as forever chemical waste at manufacturing sites.

Forever chemical contamination is a big problem, and it will not go away. We are excited to work on it and collaborate with regulators and leading groups in academia and industry to find the solution.

Reference: “PFOS destruction in a continuous supercritical water oxidation reactor” by Jianna Li, Conrad Austin, Stuart Moore, Brian R. Pinkard and Igor V. Novosselov, 7 September 2022, Chemical Engineering Journal.
DOI: 10.1016/j.cej.2022.139063

The study was funded by the Defense Threat Reduction Agency, the Army Research Office, and the Washington Research Foundation. 

Source: SciTechDaily