Press "Enter" to skip to content

A Spacecraft Could Tag Along for a Journey Toward the Sun To Watch a Comet Form in Real-Time

‘Centaurs’ near JupiterJupiter is the largest planet in the solar system and the fifth planet from the sun. It is a gas giant with a mass greater then all of the other planets combined. Its name comes from the Roman god Jupiter.”>Jupiter could provide unique opportunity to learn about solar system, says University of ChicagoFounded in 1890, the University of Chicago (UChicago, U of C, or Chicago) is a private research university in Chicago, Illinois. Located on a 217-acre campus in Chicago’s Hyde Park neighborhood, near Lake Michigan, the school holds top-ten positions in various national and international rankings. UChicago is also well known for its professional schools: Pritzker School of Medicine, Booth School of Business, Law School, School of Social Service Administration, Harris School of Public Policy Studies, Divinity School and the Graham School of Continuing Liberal and Professional Studies, and Pritzker School of Molecular Engineering.”>University of Chicago scientist.

Deep in the solar system, between Jupiter and NeptuneNeptune is the farthest planet from the sun. In our solar system, it is the fourth-largest planet by size, and third densest. It is named after the Roman god of the sea.”>Neptune, lurk thousands of small chunks of ice and rock. Occasionally, one of them will bump into Jupiter’s orbit, get caught and flung into the inner solar system—towards the sun, and us.

This is thought to be the source of many of the comets that eventually pass Earth. A new study lays out the dynamics of this little-understood system. Among the findings: it would be doable for a spacecraft to fly to Jupiter, wait in Jupiter’s orbit until one of these objects gets caught in the planet’s gravity well, and hitch a ride with the object to watch it become a comet in real-time.

“This would be an amazing opportunity to see a pristine comet ‘turn on’ for the first time,” said Darryl Seligman, a postdoctoral researcher with the University of Chicago and corresponding author of the paper, which is accepted to The Planetary Science Journal. “It would yield a treasure trove of information about how comets move and why, how the solar system formed, and even how Earth-like planets form.”

Comet Siding Spring

A NASA image taken of the comet named Siding Spring in 2010. In order to get an even closer look at a comet, scientists have proposed that a NASA spacecraft could hitch a ride alongside a comet as it approaches the inner solar system. Credit: NASA/JPL/Caltech/UCLA

Thanks in part to discoveries of several major asteroid belts, scientists over the last 50 years have revamped their theories of how our solar system came to be. Rather than big planets quietly evolving in place, they now envision a system that was much more dynamic and unstable—chunks of ice and rock scattered and smashing into each other, re-forming and moving around within the solar system.

Many of these objects eventually coalesced into the eight major planets, but others remain loose and scattered in several regions of space. “These minor bodies show you the solar system is actually this very dynamic and almost living place that’s constantly in a state of flux,” said Seligman.

Scientists are very familiar with the asteroid belt near MarsMars is the second smallest planet in our solar system and the fourth planet from the sun. Iron oxide is prevalent in Mars’ surface resulting in its reddish color and its nickname “The Red Planet.” Mars’ name comes from the Roman god of war.”>Mars, as well as the larger one out past Neptune called the Kuiper belt. But between Jupiter and Neptune, there lurks another, lesser-known population of objects called the centaurs (named after the mythical hybrid creatures due to their classification halfway between asteroids and comets).

Occasionally, these centaurs will get sucked into the inner solar system and become comets. “These objects are very old, containing ice from the early days of the solar system that has never been melted,” said Seligman. “When an object gets closer to the sun, the ice sublimates and produces these beautiful long tails.

Comet Kohoutek

This color photograph of the comet Kohoutek (C/1973 E1) was taken in 1974 by the lunar and planetary laboratory photographic team from the University of Arizona. Credit: NASA

“Therefore comets are interesting not only because they’re beautiful; they give you a way to probe the chemical composition of things from the distant solar system.”

In this study, scientists examined the centaur population and the mechanisms by which these objects occasionally become comets bound for the sun. They estimate that about half of the centaurs-turned-comets are nudged into the inner solar system by interacting with both Jupiter and SaturnSaturn is the sixth planet from the sun and has the second-largest mass in the Solar System. It has a much lower density than Earth but has a much greater volume. Saturn’s name comes from the Roman god of wealth and agriculture.”>Saturn’s orbits. The other half come too close to Jupiter, then get caught in its orbit and flung toward the center of the solar system.

“Comets are interesting not only because they’re beautiful; they give you a way to probe the chemical composition of things from the distant solar system.”

Darryl Seligman, postdoctoral researcher

The latter mechanism suggested a perfect way to get a better look at these soon-to-be comets: Space agencies, the scientists said, could send a spacecraft to Jupiter and have it sit in orbit until a centaur bumps into Jupiter’s orbit. Then the spacecraft could hitch a ride alongside the centaur as it heads toward the sun, taking measurements all the way as it transforms into a comet.

This is a beautiful but destructive process: A comet’s beautiful tail is produced as its ice burns off as the temperature rises. The ice in comets is made up of different kinds of molecules and gases, which each start to burn up at different points along the way to the sun. By taking measurements of that tail, a spacecraft could learn what the comet was made up of. “You could figure out where typical comet ices turn on, and also what the detailed internal structure of what a comet is, which you have very little hope of figuring out from ground-based telescopes,” Seligman said.

Meanwhile, the surface of the comet erupts as it heats up, creating pockmarks and craters. “Charting all of this would help you understand the dynamics of the solar system, which is important for things like understanding how to form Earth-like planets in solar systems,” he said.

While the idea sounds complicated, NASAEstablished in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. It’s vision is “To discover and expand knowledge for the benefit of humanity.””>NASA and other space agencies already have the technology to pull it off, the scientists said. Spacecraft routinely go to the outer solar system; NASA’s Juno mission, currently taking wild photos of Jupiter, only took about five years to get there. Other recent missions also show that it’s possible to visit objects even as they’re moving: OSIRIS-REx visited an asteroid 200 million miles away, and Japan’s Hayabusa 2 spacecraft brought back a handful of rocks from another asteroid.

There’s even a possible target: A year and a half ago, scientists discovered that one of the centaurs, called LD2, will likely be sucked into Jupiter’s orbit in about the year 2063. And as telescopes become more powerful, scientists may soon discover many more of these objects, Seligman said: “It’s very possible there would be 10 additional targets in the next 40 years, any of which would be attainable by a spacecraft parked at Jupiter.”

Moreover, Seligman said, “We have records of comets dating back thousands of years; how cool would it be to see how that happens up close?”

The other authors on the paper were Kaitlin Kratter of the University of Arizona’s Steward Observatory, Garrett Levine of Yale UniversityEstablished in 1701, Yale University is a private Ivy League research university in New Haven, Connecticut. It is the third-oldest institution of higher education in the United States and is organized into fourteen constituent schools: the original undergraduate college, the Yale Graduate School of Arts and Sciences and twelve professional schools. It is named after British East India Company governor Elihu Yale.”>Yale University, and Robert Jedicke of the University of Hawai’i.

Reference: “A Sublime Opportunity: The Dynamics of Cometary Bodies Transitioning into the Inner Solar System and the Feasibility of In Situ Observations of The Evolution of Their Intense Activity” by Darryl Z. Seligman, Kaitlin M. Kratter, W. Garrett Levine and Robert Jedicke, Accepted, Planetary Science Journal.
arXiv:2110.02822

Funding: T.C. Chamberlin Postdoctoral Fellowship.

Source: SciTechDaily