Press "Enter" to skip to content

Equivalent to a Forest the Size of Germany – A New Process To Capture Carbon Dioxide

Carbon dioxide (CO2) emissions are a major contributor to global warming and climate change. They come from a variety of sources including transportation, energy production, and industrial processes. CO2 emissions trap heat in the atmosphere, leading to rising temperatures and changes in weather patterns.

The research will enable the direct capture of CO2 gas from industries that are challenging to decarbonize.

According to recent research, it is estimated that approximately 0.5% of global carbon emissions could be captured through the normal crushing process of rocks that are widely used in construction by crushing the rocks in CO2 gas.

The paper, published in Nature SustainabilityNature Sustainability is a scientific journal that focuses on research related to sustainable development, which aims to meet the needs of the present without compromising the ability of future generations to meet their own needs. The journal publishes original research articles, reviews, and perspectives across a wide range of topics, including sustainable use of natural resources, reducing environmental impacts, and addressing global challenges such as climate change, biodiversity loss, and pollution.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Nature Sustainability, reports that almost no additional energy would be necessary to capture the CO2. The 0.5% of global emissions captured through this method would be equivalent to planting a forest of mature trees covering an area the size of Germany.

The materials and construction industry accounts for 11% of global carbon emissions. More than 50 billion tonnes of rock is crushed worldwide every year and current crushing processes – standard in construction and mining – do not capture CO2.

Previous work has explored trapping carbon into single minerals by the same method, but the research at the University of Strathclyde shows this is unstable and dissolves out of the mineral when placed in water. The paper documents how a larger proportion of carbon dioxide can be trapped in a stable, insoluble form in rocks composed of multiple different minerals by grinding it in CO2 gas. The resulting rock powders can then be stored and used in the environment for construction and other purposes.

The calculation of 0.5% was made for Norway, as an example, because the country publishes annual data on the volume of hard rock aggregate produced for their construction industry, and their annual national CO2 emissions are also documented.

Principal investigator Professor Rebecca Lunn, from the Department of Civil & Environmental Engineering, said: “The hope is that the sector could reduce the emissions by adapting the current setups to trap carbon from polluting gas streams such as those from cement manufacture or gas-fired power stations. The global estimate is based on the assumption that Norway’s construction industry is reasonably typical. Some countries such as Australia and South Africa will actually produce far more, as they have large mining industries and will look to crush and sell the waste rock, while others may be less. If the technology was adopted worldwide in aggregate production, it could potentially capture 0.5% of global CO2 emissions – 175 million tonnes of carbon dioxide annually. Future research can pin this down, as well as optimize the process to trap more carbon.”

Co-investigator Dr. Mark Stillings added: “Now we know that CO2 trapping in most hard rock can be done in a lab, we need to optimize the process and push the limits of how much can be trapped through the crushing technique. We then need to understand how this process can be scaled up from the lab to industry, where it can reduce global CO2 emissions. If this process was applied, the CO2 footprint associated with building houses and public infrastructure could be greatly reduced, helping to meet global objectives to combat climate change.”

As part of the Paris agreement, countries around the world agreed to pursue efforts to limit global warming to well below 2 degrees CelsiusThe Celsius scale, also known as the centigrade scale, is a temperature scale named after the Swedish astronomer Anders Celsius. In the Celsius scale, 0 °C is the freezing point of water and 100 °C is the boiling point of water at 1 atm pressure.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Celsius, preferably to 1.5 degrees Celsius, compared to pre-industrial levels. To achieve this, countries must reduce their greenhouse gas emissions to ‘net zero’ by around 2050.

Professor Lunn added: “There are many industries for which there is currently no low carbon solution and this research will allow direct gas capture of CO2 from hard-to-decarbonise industries, where a solution is not going to exist by 2050. In the future, we hope that the rock used in concrete to construct high-rise buildings and other infrastructure such as roads, bridges, and coastal defenses will have undergone this process and trapped CO2, which would otherwise have been released into the atmosphere and contributed to global temperature rise.”

.box-4-multi-112{border:none!important;display:block!important;float:none!important;line-height:0;margin-bottom:15px!important;margin-left:auto!important;margin-right:auto!important;margin-top:15px!important;max-width:100%!important;min-height:250px;min-width:250px;padding:0;text-align:center!important}

Dr. Lucy Martin, EPSRC’s Deputy Director for Cross Council Programmes said: “This breakthrough research from the University of Strathclyde, which EPSRC has proudly played a part in funding, is truly revelatory. It points to a new process for the construction industry that could significantly reduce global carbon emissions and help us meet our net zero goals.”

Reference: “Mechanochemical processing of silicate rocks to trap CO2” by Mark Stillings, Zoe K. Shipton, and Rebecca J. Lunn, 13 March 2023, Nature Sustainability.
DOI: 10.1038/s41893-023-01083-y

The study was funded by the Engineering and Physical Sciences Research Council’s (EPSRC) Doctoral Training Awards Grant. EPSRC is part of UK Research and Innovation (UKRI).

Source: SciTechDaily