Press "Enter" to skip to content

From Apollo to Artemis: Celebrating 60 Years of NASA’s Deep Space Network

This artist’s concept shows what Deep Space Station-23, a new antenna dish capable of supporting both radio wave and laser communications, will look like when completed at the Deep Space Network’s Goldstone, California, complex. Credit: NASA/JPL-Caltech

The agency’s DSN provides critical communications and navigation services to dozens of space missions, and it’s being modernized to support dozens more.

NASAEstablished in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is "To discover and expand knowledge for the benefit of humanity." Its core values are "safety, integrity, teamwork, excellence, and inclusion." NASA conducts research, develops technology and launches missions to explore and study Earth, the solar system, and the universe beyond. It also works to advance the state of knowledge in a wide range of scientific fields, including Earth and space science, planetary science, astrophysics, and heliophysics, and it collaborates with private companies and international partners to achieve its goals.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>NASA’s Deep Space Network marked its 60th year on December 24. In continuous operations since 1963, the DSN is what makes it possible for NASA to communicate with spacecraft at or beyond the Moon. The dazzling galactic images captured by the James Webb Space TelescopeThe James Webb Space Telescope (JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope. It covers longer wavelengths of light, with greatly improved sensitivity, allowing it to see inside dust clouds where stars and planetary systems are forming today as well as looking further back in time to observe the first galaxies that formed in the early universe.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>James Webb Space Telescope, the cutting-edge science data being sent back from Mars by the Perseverance rover, and the historic images sent from the far side of the Moon by Artemis I – they all reached Earth via the network’s giant radio dish antennas.

During 2024, these and other historic contributions from the past 60 years will be celebrated by NASA’s Space Communications and Navigation (SCaN) program, which manages and directs the ground-based facilities and services that the DSN provides.

More than 40 missions depend on the network, which is expected to support twice that number in the coming years. That’s why NASA is looking to the future by expanding and modernizing this critical global infrastructure with new dishes, new technologies, and new approaches.

Deep Space Network Canberra Complex

The radio antennas of NASA’s Canberra Deep Space Communications Complex are located near the Australian capital. It’s one of three Deep Space Network complexes around the world that keep the agency in contact with over 40 space missions. The DSN marks its 60th anniversary in December 2023. Credit: NASA/JPL-Caltech

“The DSN is the heart of NASA – it has the vital job of keeping the data flowing between Earth and space,” said Philip Baldwin, acting director of the network services division for SCaN at NASA Headquarters in Washington. “But to support our growing portfolio of robotic missions, and now the human Artemis missions to the Moon, we need to push forward with the next phase of DSN modernization.”

Meeting Added Demands

Managed by NASA’s Jet Propulsion Laboratory in Southern California for SCaN, the DSN allows missions to track, send commands to, and receive scientific data from faraway spacecraft. To ensure those spacecraft can always connect with Earth, the DSN’s 14 antennas are divided between three complexes spaced equally around the world – in Goldstone, California; Canberra, Australia; and Madrid, Spain.

[embedded content]
The Deep Space Network is much more than a deep space messaging service. Learn more about how the DSN carries out radio and gravity science experiments throughout the solar system. Credit: NASA/JPLThe Jet Propulsion Laboratory (JPL) is a federally funded research and development center that was established in 1936. It is owned by NASA and managed by the California Institute of Technology (Caltech). The laboratory's primary function is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA's Deep Space Network. JPL implements programs in planetary exploration, Earth science, space-based astronomy and technology development, while applying its capabilities to technical and scientific problems of national significance.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>JPL-Caltech

To make sure the network can maximize coverage between so many missions, schedulers work with DSN team members to secure network support for critical operations. For more efficiency, NASA has also changed how the network is operated: With a protocol called “Follow the Sun,” each complex takes turns running the entire network during their day shift and then hands off control to the next complex at the end of the day in that region – essentially, a global relay race that takes place every 24 hours. The cost savings, in turn, help fund DSN enhancements.

At the same time, NASA has been busy making improvements to increase capacity, from upgrading and adding dishes to developing new technologies that will help support more spacecraft and dramatically increase the amount of data that can be delivered.

One such technology is laser, or optical, communications, which could enable more data to be packed into transmissions. “Laser communications could transform how NASA communicates with faraway space missions,” said Amy Smith, deputy project manager for the DSN at JPL.

Deep Space Network Canberra Complex 1969

A single radio antenna dish stands alone at the Deep Space Network’s Canberra complex in this photo from 1969, six years after the DSN was founded. Canberra now consists of three 34-meter (112-foot) antennas and one 70-meter (230-foot) antenna. Credit: NASA/JPL-Caltech

After successfully testing the technique in Earth orbit and out to the Moon, NASA is currently using the DSOC (Deep Space Optical Communications) technology demonstration to test laser communications from ever-greater distances. Riding aboard the agency’s Psyche mission, DSOC has already sent video via laser to Earth from 19 million miles (31 million kilometers) away and aims to prove that high-bandwidth data can be sent from as far away as MarsMars is the second smallest planet in our solar system and the fourth planet from the sun. It is a dusty, cold, desert world with a very thin atmosphere. Iron oxide is prevalent in Mars' surface resulting in its reddish color and its nickname "The Red Planet." Mars' name comes from the Roman god of war.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>Mars.

“NASA is proving that laser communication is viable, so now we are looking at ways to build optical terminals inside the existing radio antennas,” said Smith. “These hybrid antennas will be able to still transmit and receive radio frequencies but will also support optical frequencies.”

Deep Space Network DSS14 Size

An artist’s rendering of NASA’s Deep Space Network 230-foot-wide, Deep Space Station 14 antenna superimposed onto a football field to illustrate scale. Credit: NASA

Technological Heritage

New technology is something that NASA and the DSN have embraced from their inception. The network’s roots extend to 1958, when JPL was contracted by the U.S. Army to deploy portable radio tracking stations to receive telemetry of the first successful U.S. satellite, Explorer 1, which JPL built. A few days after Explorer 1’s launch, but before the creation of NASA later that year, JPL was tasked with figuring out what would be needed to create an unprecedented telecommunications network to support future deep space missions, beginning with the early Pioneer missions.

After NASA formed in 1958, JPL’s ground stations were named Deep Space Instrumentation Facilities, and they operated largely independently from one another until 1963. That’s when the DSN was officially founded and the ground stations were connected to JPL’s new network control center, which was nearing completion. Called the Space Flight Operations Facility, that building remains the “Center of the Universe” through which data from the DSN’s three global complexes flows.

“We have six decades driving technological innovation, supporting hundreds of missions that have made countless discoveries about our planet and the universe it inhabits,” said Bradford Arnold, deputy director for the Interplanetary Network at JPL. “Our amazing workforce that continues to drive that innovation today forms a steadfast foundation upon which we can build the next 60 years of space exploration and scientific advancement.”

Source: SciTechDaily