Press "Enter" to skip to content

Giant Cosmic Cotton Ball: A Dark Matter Deficient Galaxy

This deep  Hubble Space Telescope image reveals the diffuse dwarf galaxy NGC2052-DF2, an unusual “see-through” galaxy. The giant cosmic cotton ball is so diffuse and its ancient stars so spread out that distant galaxies in the background can be seen through it. Astronomers measured the luminosities of faint stars at the tip of the red giant branch in this galaxy to improve the accuracy of its distance and to conclude that, in agreement with earlier studies, it does appear to be very deficient in dark matter. Credit: Science: NASA, ESA, STScI, Zili Shen (Yale), Pieter van Dokkum (Yale), Shany Danieli (IAS) Image Processing: Alyssa Pagan (STScI)

The galaxy NGC 1052-DF2 resides in a field of galaxies about sixty-five million light-years away. Its low mass, only about two hundred million solar-masses, makes it a “dwarf” and its size, about fifteen thousand light-years in diameter, places it in the regime of ultra-diffuse galaxies. It is also distinguished by hosting a large population of luminous globular clusters.

Two years ago a second, similar faint dwarf galaxy was found near it, and the relative motions of these two galaxies strongly suggest they have very little or no dark matter; for comparison, in the Milky WayThe Milky Way is the galaxy that contains the Earth, and is named for its appearance from Earth. It is a barred spiral galaxy that contains an estimated 100-400 billion stars and has a diameter between 150,000 and 200,000 light-years.”>Milky Way (a normal galaxy) the dark matter contains nearly ten times more mass than the stellar matter.

Astronomers also noted that, if these mass and motion measurements are accurate, they might be used to test and reject (or confirm) one long-standing alternate theory of gravity to Einstein’s. But first the distance to the galaxy needs to be known more accurately and precisely, since the values for many of the galaxy’s properties like motion, luminosity and inferred mass rely on the assumed distance.

CfAThe Harvard-Smithsonian Center for Astrophysics (CfA) is a joint venture between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. Founded in 1973, the Harvard-Smithsonian Center for Astrophysics is comprised of six research divisions: Atomic and Molecular Physics; Optical and Infrared Astronomy; High Energy Astrophysics; Radio and Geoastronomy; Stellar, Solar, and Planetary Sciences; and Theoretical Astrophysics.”>CfA astronomer Charlie Conroy was a member of a team of astronomers that determined a new distance for the galaxy. Rather than rely on its velocity /redshift to get the distance, a value that might be confused by its local motion within the group of galaxies, they derived the distance using the brightness of faint red giant stars at the tip of the red giant branch, a standard and well-established method when the stars are bright enough to be accurately studied.

As a low-mass star burns through nearly all of its hydrogen and starts to fuse helium in its core, the transition is accompanied by a shrinking in size, a rapid rise in the core temperature, a shift towards a bluer color, and an abrupt decrease in luminosity. This rapid change in brightness is readily apparent in optical and near-infrared wavelengths; the absolute luminosities of those stars can then be determined and, from their apparent luminosities, their distance calculated.

The astronomers used forty orbits of the Hubble Space TelescopeThe Hubble Space Telescope (often referred to as Hubble or HST) is one of NASA’s Great Observatories and was launched into low Earth orbit in 1990. It is one of the largest and most versatile space telescopes in use and features a 2.4-meter mirror and four main instruments that observe in the ultraviolet, visible, and near-infrared regions of the electromagnetic spectrum. It was named after astronomer Edwin Hubble.”>Hubble Space Telescope to measure the brightness of the red giant stars in NGC 1052-DF2 and from that data to determine their distance: 72.7 million light-years plus-or-minus 5%.

This new distance confirms the unusual characteristics of the galaxy including its puzzling dearth of dark matter and that its globular clusters are exceptionally luminous (in fact the new distance makes them even more luminous). The result also means the data will not be suitable for tests of the proposed alternative theory of gravity.

For more on this discovery:

Reference: “A Tip of the Red Giant Branch Distance of 22.1 ± 1.2 Mpc to the Dark Matter Deficient Galaxy NGC 1052–DF2 from 40 Orbits of Hubble Space Telescope Imaging” by Zili Shen, Shany Danieli, Pieter van Dokkum, Roberto Abraham, Jean P. Brodie, Charlie Conroy, Andrew E. Dolphin, Aaron J. Romanowsky, J. M. Diederik Kruijssen and Dhruba Dutta Chowdhury, 9 June 2021, The Astrophysical Journal Letters.
DOI: 10.3847/2041-8213/ac0335

Source: SciTechDaily