Press "Enter" to skip to content

Gravitational Waves: LISA and the Detection of New Fundamental Fields – Is General Relativity Correct?

Illustration of two orbiting black holes warping spacetime and generating gravitational waves.

Published in Nature Astronomy the work which shows the unprecedented accuracyHow close the measured value conforms to the correct value.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>accuracy with which gravitational wave observations by the space interferometer LISA will be able to detect new fundamental fields

Published in Nature Astronomy the work by Andrea Maselli, researcher at GSSI and INFN associate, together with researchers from SISSA, the University of Nottingham and La Sapienza of Rome, which shows the unprecedented accuracy with which gravitational wave observations by the space interferometer LISA will be able to detect new fundamental fields.

Is General Relativity the correct theory of gravitation?  Can gravity be used to detect new fundamental fields?

A recent Letter published on February 9, 2022, in Nature Astronomy, authored by a researcher of the GSSI and colleagues from SISSA, the University of Nottingham, and from La Sapienza of Rome, suggests that an answer to these questions may come from LISA, the space-based gravitational-wave (GW) detector which is expected to be launched by ESA/NASAEstablished in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. It's vision is "To discover and expand knowledge for the benefit of humanity."” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>NASA in 2037.

Orbital Path Stellar Component EMRI Spinning Black Hole

Short section of the orbital path followed by the stellar component of an EMRI around a spinning black hole. Credit: N. Franchini

New fundamental fields, and in particular scalars, have been postulated in a variety of scenarios: as explanations for dark matter, as the cause for the accelerated expansion of the Universe, or as low-energy manifestations of a consistent and complete description of gravity and elementary particles.

Observations of astrophysical objects with weak gravitational fields and small spacetime curvature have provided no evidence of such fields so far. However, there is reason to expect that deviations from General Relativity, or interactions between gravity and new fields, will be more prominent at large curvatures. For this reason, the detection of GWs — which opened a novel window on the strong-field regime of gravity — represents an unique opportunity to detect these fields.

Extreme Mass Ratio Inspirals (EMRI) in which a stellar-mass compact object, either a black holeA black hole is a place in space where the pull of gravity is so strong not even light can escape it. Astronomers classify black holes into three categories by size: miniature, stellar, and supermassive black holes. Miniature black holes could have a mass smaller than our Sun and supermassive black holes could have a mass equivalent to billions of our Sun.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>black hole or a neutron starA neutron star is the collapsed core of a large (between 10 and 29 solar masses) star. Neutron stars are the smallest and densest stars known to exist. Though neutron stars typically have a radius on the order of just 10 – 20 kilometers (6 – 12 miles), they can have masses of about 1.3 – 2.5 that of the Sun.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>neutron star, inspirals into black hole up to millions of times the mass of the Sun, are among the target sources of LISA, and provide a golden arena to probe the strong-field regime of gravity. The smaller body performs tens of thousands of orbital cycles before it plunges into the supermassive black hole and this leads to long signals that can allow us to detect even the smallest deviations from the predictions of Einstein’s theory and the Standard Model of Particle Physics.

LISA Pathfinder in Space

Artist’s impression of LISA Pathfinder, ESA’s mission to test technology for future gravitational-wave observatories in space. LISA is a space-based gravitational wave observatory building on the success of LISA Pathfinder and LIGO. Credit: ESA–C.Carreau

The Authors have developed a new approach for modeling the signal and performed for the first time a rigorous estimate of LISA’s capability to detect the existence of scalar fields coupled with the gravitational interaction, and to measure the scalar charge, a quantity which measures how much scalar field is carried by the small body of the EMRI. Remarkably, this approach is theory-agnostic, since it does not depend on the origin of the charge itself, or on the nature of the small body. The analysis also shows that such measurement can be mapped to strong bounds on the theoretical parameters that mark deviations from General Relativity or the Standard Model.

LISA (Laser Interferometer Space Antenna), devoted to detect gravitational wavesGravitational waves are distortions or ripples in the fabric of space and time. They were first detected in 2015 by the Advanced LIGO detectors and are produced by catastrophic events such as colliding black holes, supernovae, or merging neutron stars.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>gravitational waves by astrophysical sources, will operate in a constellation of three satellites, orbiting around the Sun millions of kilometers far away from each other. LISA will observe gravitational waves emitted at low frequency, within a band not available to terrestrial interferometers due to environmental noise. The visible spectrum for LISA will allow to study new families of astrophysical sources, different from those observed by Virgo and LIGOThe Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory supported by the National Science Foundation and operated by Caltech and MIT. It's designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. It's multi-kilometer-scale gravitational wave detectors use laser interferometry to measure the minute ripples in space-time caused by passing gravitational waves. It consists of two widely separated interferometers within the United States—one in Hanford, Washington and the other in Livingston, Louisiana.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>LIGO, as the EMRIs, opening a new window on the evolution of compact objects in a large variety of environments of our Universe.

Reference: “Detecting fundamental fields with LISA observations of gravitational waves from extreme mass-ratio inspirals” by Andrea Maselli, Nicola Franchini, Leonardo Gualtieri, Thomas P. Sotiriou, Susanna Barsanti and Paolo Pani, 10 February 2022, Nature Astronomy.
DOI: 10.1038/s41550-021-01589-5

Source: SciTechDaily