Press "Enter" to skip to content

Humanity’s Quest To Discover the Origins of Life in the Universe – “We Are Living in an Extraordinary Moment in History”

Nobel Laureate Didier Queloz, along with fellow laureate Jack Szostak and astronomer Dimitar Sasselov, has announced the creation of a new international alliance called the “Origins Federation” during the 2023 Annual Meeting of the American Association for the Advancement of Science. The federation brings together researchers working in the origins of life centers and initiatives at ETH Zurich, University of Cambridge, Harvard University, and The University of Chicago to explore the chemical and physical processes of living organisms and environmental conditions hospitable to supporting life on other planets.

“We are living in an extraordinary moment in history,” says Didier Queloz, who directs ETH Zurich’s Centre for Origin and Prevalence of Life and the Leverhulme Centre for Life in the Universe at Cambridge. While still a doctoral student, Queloz was the first to discover an exoplanet — a planet orbiting a solar-type star outside of Earth’s solar system. A discovery for which he would later receive a Nobel Prize in physics.

Within a generation, scientists have now discovered more than 5,000 exoplanets and predict the potential existence of trillions more in the Milky WayThe Milky Way is the galaxy that contains our Solar System and is part of the Local Group of galaxies. It is a barred spiral galaxy that contains an estimated 100-400 billion stars and has a diameter between 150,000 and 200,000 light-years. The name "Milky Way" comes from the appearance of the galaxy from Earth as a faint band of light that stretches across the night sky, resembling spilled milk.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Milky Way galaxy alone. Each discovery inspires more questions than answers about how and why life emerged on Earth and whether it exists elsewhere in the universe.

Technological advancements, such as the James Webb Space Telescope and interplanetary missions to MarsMars is the second smallest planet in our solar system and the fourth planet from the sun. It is a dusty, cold, desert world with a very thin atmosphere. Iron oxide is prevalent in Mars' surface resulting in its reddish color and its nickname "The Red Planet." Mars' name comes from the Roman god of war.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Mars, accelerate access to an overwhelming volume of new observations and data, such that it will take the convergence of a multidisciplinary network to understand the emergence of life in the universe.

ETH Zurich, Cambridge, Harvard, and Chicago found the “Origins Federation”

Joining forces with chemist and fellow Nobel Laureate, Jack Szostak and astronomer, Dimitar Sasselov, Didier Queloz announced the founding of a new “Origins Federation” during the 2023 Annual Meeting of the American Association for the Advancement of Science (AAAS). While a fictional interstellar federation might immediately spring to mind, this international alliance brings together the expertise of researchers working in the origins of life centers and initiatives at ETH Zurich, University of Cambridge, Harvard University, and The University of Chicago.

Together, scientists will explore the chemical and physical processes of living organisms and environmental conditions hospitable to supporting life on other planets. “The Origins Federation,” Queloz commented, “builds upon a long-standing collegial relationship strengthened through a shared collaboration in a recently completed project with the Simons Foundation.”

What humanity could learn from extra-terrestrial biosignatures

Such collaborations support the work of researchers like Zoology professor, Emily Mitchell. Mitchell, who works with Queloz in Cambridge’s Leverhulme Centre for Life in the Universe is an ecological time traveler. She uses field-based laser-scanning and statistical mathematical ecology on 580-million-year-old fossils of deep-sea organisms to determine the driving factors that influence the macro-evolutionary patterns of life on Earth. Speaking during ETH Zurich’s Origins of Life session at the AAAS, Mitchell took participants back in time to 4-billion years ago when Earth’s early atmosphere — devoid of oxygen and steeped in methane – showed its first signs of microbial life. She spoke about how life survives in extreme environments and then evolves offering potential Astro-biological insights into the origins of life elsewhere in the universe.

“As we begin to investigate other planets, through the Mars missions,” Mitchell says, “biosignatures could reveal whether or not the origin of life itself and its evolution on Earth is just a happy accident or part of the fundamental nature of the universe, with all its biological and ecological complexities.”

Colonizing space with synthetic cells

While complex biological cells are not yet fully understood, synthetic cells allow biochemists, like Kate Adamala, University of Minnesota’s Protobiology Lab to deconstruct complex systems into simpler parts. Parts that allow scientists to understand the basic principles of life and evolution not only on Earth, but potentially life on other planets in the solar system.

Adamala launched her quest to build life from scratch as a graduate student at Harvard working with Nobel Laureate, Jack Szostak. She endeavors to create simple, cell-like bioreactors resembling the earliest forms of life by applying the principles of engineering to biology. During the AAAS, Adamala explained how synthetic cells allow scientists to study the past, present, and future of life in the universe. Unlike biological cells, it is possible to digitalize synthetic cells and transmit them across vast distances to create, for example, on demand medication or vaccines – an “Astro-pharmacy” that could potentially support life on spaceship, or even a future Martian colony. Until such time, synthetic cells offer practical applications for humanity in terms of sustainable energy systems, higher crop yields, and biomedical therapies.

What is life?

While there is not yet a comprehensive definition of life, the quest to discover its origins has inspired enthusiasm, new collaborations, and opened the doors within the scientific community’s most hallowed halls.

Origins Federation

Researchers from four leading institutions are pleased to announce their intent to create a research consortium with the goal of facilitating efficient multidisciplinary and innovative collaborative research to advance our understanding of the emergence and early evolution of life, and its place in the cosmos.

The following centers establish the Origins Federation:

The Origins Federation will pursue scientific research topics of interest to its founding centers with a long-term perspective and common milestones. It will strive to establish a stable funding platform to create opportunities for creative and innovative ideas, and to enable young scientists to make a career in this new field.

The Origins Federation is open to new members, both centers and individuals, and is committed to developing the mechanisms and structure to achieve that aim.

The Origins Federation’s inaugural science conference will take place at Harvard University on September 12 – 15, 2023.

Source: SciTechDaily