Press "Enter" to skip to content

Increased Infectivity Drives COVID Evolution – Mutations That Allow the Virus To Escape Vaccines Become Dominant

First announced by the World Health Organization on November 26, 2021, the SARS-CoV-2Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the official name of the virus strain that causes coronavirus disease (COVID-19). Previous to this name being adopted, it was commonly referred to as the 2019 novel coronavirus (2019-nCoV), the Wuhan coronavirus, or the Wuhan virus.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>SARS-CoV-2 omicron variant spread rapidly around the world, becoming the dominant variant in the U.S. and elsewhere. Now, researchers report in ACS Infectious Diseases and the Journal of Chemical Information and Modeling that omicron and other variants are evolving increased infectivity and antibody escape, according to an artificial intelligence (AI) model. Therefore, new vaccines and antibody therapies are desperately needed, the researchers say.

The team found that mutations to strengthen infectivity are the driving force for viral evolution, whereas in highly vaccinated populations, mutations that allow the virus to escape vaccines become dominant.

Understanding how SARS-CoV-2 evolves is essential to predicting vaccine breakthrough and designing mutation-proof vaccines and monoclonal antibody treatments. In a recent study in ACS Infectious Diseases, Guo-Wei Wei and colleagues analyzed almost 1.5 million SARS-CoV-2 genome sequences taken from people with COVID-19First identified in 2019 in Wuhan, China, Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has spread globally, resulting in the 2019–20 coronavirus pandemic.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>COVID-19. They identified 683 unique mutations in the receptor binding domain (RBD), the region of the SARS-CoV-2 spike protein that attaches to the human ACE2 receptor on the surface of human cells.

Then, they used an AI model to predict how these mutations affect binding strength of the RBD to ACE2 and to 130 antibody structures, including several monoclonal antibodies used as therapies. The team found that mutations to strengthen infectivity are the driving force for viral evolution, whereas in highly vaccinated populations, mutations that allow the virus to escape vaccines become dominant. The researchers also predicted that certain combinations of mutations have a high likelihood of massive spread.

In another study in the Journal of Chemical Information and Modeling, Wei and colleagues took a deep dive into the omicron variant’s infectivity, vaccine breakthrough and antibody resistance. They used their AI model to analyze how the variant’s unusually high number of mutations on the spike protein affect RBD binding to ACE2 and antibodies. Their results indicated that omicron is over 10 times more infectious than the original coronavirus and 2.8 times more infectious than the delta variant. In addition, omicron is 14 times more likely than delta to escape current vaccines, and it is predicted to compromise the efficacy of several monoclonal antibody therapies. Many of these predictions have been verified by emerging experimental results, stressing the importance of developing a new generation of vaccines and monoclonal antibodies that won’t be easily affected by viral mutations, the researchers say.

References:

“Emerging Vaccine-Breakthrough SARS-CoV-2 Variants” by Rui Wang, Jiahui Chen, Yuta Hozumi, Changchuan Yin and Guo-Wei Wei, 8 February 2022, ACS Infectious Diseases.
DOI: 10.1021/acsinfecdis.1c00557

“Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance” by Jiahui Chen, Rui Wang, Nancy Benovich Gilby and Guo-Wei Wei, 6 January 2022, Journal of Chemical Information and Modeling.
DOI: 10.1021/acs.jcim.1c01451

The authors acknowledge funding from the National Institutes of Health, the National Science Foundation, NASAEstablished in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. It's vision is "To discover and expand knowledge for the benefit of humanity."” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>NASA, the Michigan Economic Development Corporation, the Michigan State University Foundation, Bristol-Myers Squibb and Pfizer.

Source: SciTechDaily