Press "Enter" to skip to content

NASA Artemis I: Orion Will Attempt the First Skip Entry for a Human Spacecraft

Illustration of NASA’s Orion spacecraft reentering Earth’s atmosphere. Credit: NASA

As NASAEstablished in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is "To discover and expand knowledge for the benefit of humanity." Its core values are "safety, integrity, teamwork, excellence, and inclusion."” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>NASA’s Artemis I mission to the Moon draws to a close, the Orion spacecraft is on its way back to Earth, with the planned splashdown on Sunday, December 11, fast approaching. When Orion is nearing its return to Earth, it will attempt the first skip entry for a human spacecraft. This maneuver is designed to pinpoint its landing spot in the Pacific Ocean.

During this skip entry, Orion will dip into the upper part of Earth’s atmosphere and use that atmosphere, along with the lift of the capsule, to skip back out of the atmosphere, then reenter for final descent under parachutes and splashdown. It’s a little like skipping a rock across the water in a river or lake.

“The skip entry will help Orion land closer to the coast of the United States, where recovery crews will be waiting to bring the spacecraft back to land,” said Chris Madsen, Orion guidance, navigation and control subsystem manager. “When we fly crew in Orion beginning with Artemis II, landing accuracyHow close the measured value conforms to the correct value.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>accuracy will really help make sure we can retrieve the crew quickly and reduces the number of resources we will need to have stationed in the Pacific Ocean to assist in recovery.”

[embedded content]
Ever skip stones across a pond? Imagine doing it with a spacecraft. When the Lockheed Martin-built Orion spacecraft returns to Earth at the end of the Artemis I mission, it will attempt a never-been-done guidance and control maneuver called a skip-entry. This maneuver allows for a precise landing location for safer crew recovery efforts.

During Apollo, the spacecraft entered the Earth’s atmosphere directly and could then travel up to 1,725 miles (1,500 nautical miles / 2,880 km) beyond that location before splashing down. This limited range required U.S. Navy ships to be stationed in multiple, remote ocean locations. By using a skip entry, Orion can fly up to 5,524 miles (4,800 nautical miles / 8,890 km) beyond the point of entry, allowing the spacecraft to touch down with more precision. The skip entry ultimately enables the spacecraft to accurately and consistently land at the same landing site regardless of when and where it comes back from the Moon.

“We extend the range by skipping back up out of the atmosphere where there is little to no drag on the capsule. With little or no drag, we extend the range we fly,” said Madsen. “We use our capsule lift to target how high we skip, and thus how far we skip.”

Although the concept of the skip entry has been around since the Apollo era, it wasn’t used because Apollo lacked the necessary navigational technology, computing power, and accuracy.

“We took a lot of that Apollo knowledge and put it into the Orion design with the goal of making a more reliable and safer vehicle at lower cost,” said Madsen. “These are some of the things we’re doing that are different and provide more capability than Apollo.”

Lunar Entry Modes

This graph shows the extent to which the Orion spacecraft’s range can be extended with a skip entry, compared to the range the Apollo spacecraft was able to fly with a direct entry. Credit: NASA

The skip entry also will allow astronauts to experience lower g-forces during Earth entry from Moon missions. Instead of a single event of high acceleration, there will be two events of a lower acceleration of about four g’s each. The skip entry will reduce the acceleration load for the astronauts so they have a safer, smoother ride.

Splitting up the acceleration events also splits up the heating, no small matter for a spacecraft that will endure approximately 5,000 degrees FahrenheitThe Fahrenheit scale is a temperature scale, named after the German physicist Daniel Gabriel Fahrenheit and based on one he proposed in 1724. In the Fahrenheit temperature scale, the freezing point of water freezes is 32 °F and water boils at 212 °F, a 180 °F separation, as defined at sea level and standard atmospheric pressure. ” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Fahrenheit (2,800 degrees CelsiusThe Celsius scale, also known as the centigrade scale, is a temperature scale named after the Swedish astronomer Anders Celsius. In the Celsius scale, 0 °C is the freezing point of water and 100 °C is the boiling point of water at 1 atm pressure.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Celsius) upon reentry, half as hot as the surface of the Sun. The heat the spacecraft will experience upon reentry will be split over two events causing a lower heat rate at both occurrences and ultimately making it a safer ride for the astronauts.

During Artemis missions, Orion will splashdown approximately 50 miles (43 nautical miles / 80 km) off the coast of San Diego, California, where rescue teams are close and can quickly recover the spacecraft. This quick recovery will make it safer for the astronauts. It will also be more cost-efficient than Apollo by eliminating the need for the Navy to deploy ships widely across the target ocean.

As an essential part of NASA’s Artemis program, the Orion spacecraft will fly on NASA’s first integrated test of its deep space exploration systems during Artemis I. The Space Launch System rocket will launch an uncrewed Orion on a mission to travel 40,000 miles beyond the Moon and then return to Earth.

Source: SciTechDaily