Press "Enter" to skip to content

New Research Reveals the Biochemical “Rings of Power”

Natural products containing benzoxazolinate, a structure with two rings, are excellent candidates for pharmaceutically valuable substances, such as antibiotics, anticancer drugs, or immunosuppressants. But how can their producers be identified? Credit: Max Planck Institute for Terrestrial Microbiology/Crames

The process of genome mining reveals a common category of naturally occurring compounds that have the potential as viable drug candidates.

Researchers at the Max Planck Institute for Terrestrial Microbiology have discovered the biosynthesis of a rare compound called benzoxazolinate, which is found in Benzobactins – a class of bacterial natural products that have unique biological activity due to its two-ring structure.

By utilizing genomic research, scientists were able to uncover the previously unknown genes responsible for its formation. This breakthrough opens doors to the discovery of a multitude of new natural compounds with medical applications.

Microorganisms in their natural habitat often face varying environmental conditions and have evolved to produce a diverse range of natural products with various chemical compositions and functions to aid their survival.

Benzobactines – powerful, but rare

Benzoxazolinate is a rare natural compound that confers extraordinary bioactivities on natural products. It is, for example, the essential part of lidamycin, an antitumor antibiotic that is one of the most cytotoxic compounds so far. The reason for this capacity is the fact that benzoxazolinate consists of two rings, a structure that allows it to interact with protein as well as with DNADNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>DNA. However, tracking down the producers of this rare substance in nature resembles the proverbial search for a needle in a haystack.

In order to exploit new pharmaceutically valuable natural compounds, like antibiotics, tumor suppressants, or immunosuppressants, it is necessary to know the responsible genes, or more precisely, their biosynthetic gene clusters (BGCs). BGCs are locally clustered groups of two or more genes that together encode the production of a certain set of enzymes – and thus the corresponding natural products produced by these enzymes.

So far, the biosynthetic gene cassette of benzoxazolinate remained elusive, hindering the expansion of the repertoire of bioactive benzoxazolinate-containing compounds. More specifically, the last formation step of benzoxazolinate was unclear. Now a team of Max-Planck scientists led by Dr. Yi-Ming Shi and Prof. Dr. Helge Bode succeeded in the biosynthetic characterization of the benzoxazolinate pathway. During the biosynthesis, the pathway obviously “borrows” an intermediate from the so-called phenazine pathway, responsible for the production of another natural product. Most importantly, the researchers identified the enzyme that is responsible for the last step, the cyclization towards benzoxazolinate.

Using an enzyme as a probe for natural substances

Ph.D. student Jan Crames, the co-first author of the study that was also funded by the LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG) and the European Research Council, explains: “Knowing the enzyme`s identity, we used it as a probe. With genome-mining, we were able to detect many closely related biosynthetic pathways for benzoxazolinate-containing natural products, so-called benzobactins.” According to the scientists, the most striking aspect was the wide distribution of these genes in other bacteria. “These pathways were found in taxonomically and ecologically remarkably diverse bacteria ranging from land to ocean, as well as plant pathogens and biocontrol microbes. Their wide distribution indicates that these molecules have a significant ecological function on the producers,” as Yi-Ming Shi, the first author of the study indicates.

Prof. Helge Bode, leader of the department “Natural Products in Organismic Interactions“ at the Max-Planck Institute for Terrestrial Microbiology in Marburg, adds: “Our findings reveal the immense biosynthetic potential of a widespread biosynthetic gene cluster for benzobactin. Now, we have to find out their ecological function and if we can apply them as antibiotics or other drugs.”

Reference: “Genome Mining Enabled by Biosynthetic Characterization Uncovers a Class of Benzoxazolinate-Containing Natural Products in Diverse Bacteria” by Yi-Ming Shi, Jan J. Crames, Laura Czech, Kenan A. J. Bozhüyük, Yan-Ni Shi, Merle Hirschmann, Stefanie Lamberth, Peter Claus, Nicole Paczia, Christian Rückert, Jörn Kalinowski, Gert Bange and Helge B. Bode, 5 October 2022, Angewandte Chemie.
DOI: 10.1002/anie.202206106

Crystallization and structural analysis of a key enzyme was performed in cooperation with Dr. Laura Czech and Prof. Gert Bange from SYNMIKRO, Philipps-University Marburg. Enzyme kinetics was analyzed by Nicole Paczia and the team from our Core Facility for Metabolomics and Small Molecule Mass Spectrometry. Genome sequencing was carried out by Prof. Jörn Kalinowski and the team from Bielefeld University.

Source: SciTechDaily