Press "Enter" to skip to content

Not Accurate Enough: Scientists Remeasure the Gravitational Constant

Gravity is a fundamental interaction that causes anything with mass or energy to attract one other.

The Gravitational Constant

The gravitational constant G determines the intensity of gravity, the force that pulls the Earth in its orbit around the sun or causes apples to fall to the ground. It is a component of Isaac Newton’s law of universal gravitation, which was developed almost 300 years ago. The constant must be determined by experimentation since it cannot be mathematically calculated.

The value of G has been the subject of several tests throughout the years, but the scientific community remains unsatisfied with the result. In comparison to the values of all the other important natural constants, such as the speed of light in a vacuum, it is far less accurate.

Gravity is a very weak force that cannot be separated, which makes it incredibly challenging to measure. When you measure the gravity between two bodies, you also have to estimate the impact of all other bodies in the universe.

“The only option for resolving this situation is to measure the gravitational constant with as many different methods as possible,” explains Jürg Dual, a professor in the Department of Mechanical and Process Engineering at ETH Zurich. He and his colleagues conducted a new experiment to redetermine the gravitational constant and have now published their work in the prestigious journal Nature PhysicsAs the name implies, Nature Physics is a peer-reviewed, scientific journal covering physics and is published by Nature Research. It was first published in October 2005 and its monthly coverage includes articles, letters, reviews, research highlights, news and views, commentaries, book reviews, and correspondence.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Nature Physics.

Gravitational Constant Experimental Set Up

With this experimental set-up, ETH researchers succeeded in determining the gravitational constant in a new way. Credit: Juerg Dual / IMES / ETH Zurich

A novel experiment in an old fortress

Dual’s team set up their measurement equipment at the former Furggels fortress, which is located close to Pfäfers above Bad Ragaz, Switzerland, in order to exclude sources of interference as much as possible. Two beams hung in vacuum chambers make up the experimental setup. After the researchers set one vibrating, gravitational coupling caused the second beam to also exhibit minimal movement (in the picometre range – i.e., one trillionth of a meter). The researchers used laser equipment to measure the motion of the two beams, and by analyzing this dynamic effect, they were able to estimate the gravitational constant’s magnitude.

The value the researchers arrived at using this method is 2.2 percent higher than the current official value given by the Committee on Data for Science and Technology. However, Dual acknowledges that the new value is subject to a great deal of uncertainty: “To obtain a reliable value, we still need to reduce this uncertainty by a considerable amount. We’re already in the process of taking measurements with a slightly modified experimental setup so that we can determine the constant G with even greater precision.” Initial results are available but haven’t yet been published. Still, Dual confirms that “we’re on the right track.”

The researchers run the experiment remotely from Zurich, which minimizes disruptions from personnel present on site. The team can view the measurement data in real-time whenever they choose.

Insight into the history of the universe

For Dual, the advantage of the new method is that it measures gravity dynamically via the moving beams. “In dynamic measurements, unlike static ones, it doesn’t matter that it’s impossible to isolate the gravitational effect of other bodies,” he says. That’s why he hopes that he and his team can use the experiment to help crack the gravity conundrum. Science has still not fully understood this natural force or the experiments that relate to it.

For example, a better understanding of gravity would allow us to better interpret gravitational wave signals. Such waves were detected for the first time in 2015 at the LIGOThe Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory supported by the National Science Foundation and operated by Caltech and MIT. It's designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. It's multi-kilometer-scale gravitational wave detectors use laser interferometry to measure the minute ripples in space-time caused by passing gravitational waves. It consists of two widely separated interferometers within the United States—one in Hanford, Washington and the other in Livingston, Louisiana.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>LIGO observatories in the US. They were the result of two orbiting black holes that had merged at a distance of about 1.3 billion light-years from Earth. Since then, scientists have documented dozens of such events; if they could be traced in detail, they would reveal new insights into the universe and its history.

A career-crowning achievement

Dual began working on methods to measure the gravitational constant in 1991, but at one point had put his work on hold. However, the observation of gravitational wavesGravitational waves are distortions or ripples in the fabric of space and time. They were first detected in 2015 by the Advanced LIGO detectors and are produced by catastrophic events such as colliding black holes, supernovae, or merging neutron stars.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>gravitational waves at LIGO gave it new momentum, and in 2018 he resumed his research. In 2019, the project team set up the laboratory in the Furggels fortress and began new experiments. In addition to the scientists from Dual’s group and a statistics professor, the project also involved infrastructure personnel such as cleanroom specialists, an electrical engineer, and a mechanic. “This experiment couldn’t have come together without years of team effort,” Dual says. He is becoming a professor emeritus at the end of July this year. “A successful experiment is a nice way to end my career,” he says.

Reference: “Dynamic measurement of gravitational coupling between resonating beams in the hertz regime” by Tobias Brack, Bernhard Zybach, Fadoua Balabdaoui, Stephan Kaufmann, Francesco Palmegiano, Jean-Claude Tomasina, Stefan Blunier, Donat Scheiwiller, Jonas Fankhauser, and Jürg Dual, 11 July 2022, Nature Physics.
DOI: 10.1038/s41567-022-01642-8

Source: SciTechDaily