Press "Enter" to skip to content

Redefining Brain Function: Physicists Overturn Long-Standing Assumptions

A new study challenges the long-held view that the neuronal soma is the key computational unit of the brain. By demonstrating that dendrites play a crucial role in neuronal plasticity and other dynamics, this research could redefine our understanding of brain functionality and disease origins.

Recent research suggests that a number of neuronal characteristics, traditionally believed to stem from the cell body or soma, may actually originate from processes in the dendrites. This discovery has significant implications for the study of degenerative diseases and for understanding the different states of brain activity during sleep and wakefulness.

The brain is an intricate network comprising billions of neurons. Each neuron’s cell body, or soma, engages in simultaneous communication with thousands of other neurons through its synapses. These synapses act as links, facilitating the exchange of information. Additionally, each neuron receives incoming signals through its dendritic trees, which are highly branched and extend for great lengths, resembling the structure of a complex and vast arboreal network.

For the last 75 years, a core hypothesis of neuroscience has been that the basic computational element of the brain is the neuronal soma, where the long and ramified dendritic trees are only cables that enable them to collect incoming signals from its thousands of connecting neurons. This long-lasting hypothesis has now been called into question.

New Research Findings

In an article just published in Physica A, researchers from Bar-Ilan University in Israel reveal that many dynamical features that are commonly attributed to the soma may stem from dendritic mechanisms.

“Typically, in-vitro experiments examine neurons using a fixed holding membrane potential, imitating the physiological conditions of intact brains in an awake state,” said Prof. Ido Kanter, of Bar-Ilan’s Department of Physics and Gonda (Goldschmied) Multidisciplinary Brain Research Center, who led the research. “We went against conventional wisdom and performed new types of experiments, violating the physiological conditions of the brain. Results showed that neuronal features are independent of these physiological conditions, a finding which strongly pinpoints dendrites as the segments which control neuronal plasticity features, such as the neuronal firing frequency and the stimulation threshold of the neuron.”

[embedded content]
A paradigm shift in brain research: The new neuron and the new type of learning. Credit: Prof. Ido Kanter, Bar-Ilan University

Presented experimental evidence supports previous research by Kanter and his experimental research team — conducted by Dr. Roni Vardi — indicating efficient dendritic tree learning evidence for sub-dendritic adaptation using neuronal cultures, together with other anisotropic properties of neurons, like different spike waveforms, refractory periods and maximal transmission rates.

The new results call for a re-examination of the origin of degenerative diseases, since the origin of many neuronal functionalities are beyond the traditional framework and must be attributed to the dendrites instead of the soma. In addition, results question the origin of awake and sleep states of our brain which are commonly attributed to the level of the somatic membrane potential.

Reference: “Neuronal plasticity features are independent of neuronal holding membrane potential” by Roni Vardi, Yael Tugendhaft and Ido Kanter, 1 November 2023, Physica A: Statistical Mechanics and its Applications.
DOI: 10.1016/j.physa.2023.129351

Source: SciTechDaily