Press "Enter" to skip to content

Scaling Up the Power of Nanotechnology – Scientists Develop New Conceptual Nanomaterial With Huge Potential

Scientists at the University of Missouri have created a nanocapsule capable of targeted substance delivery, with potential applications in medical and scientific fields. This advancement, which uses a structure similar to gecko feet, signifies a major step in supramolecular chemistry and could transform how drugs and nutrients are delivered in biological systems. (Artist’s concept)

University of Missouri researchers’ conceptual design of a nanomaterial could potentially pave the way for new uses of nanotechnology in medicine and science.

In a recent study, scientists at the University of Missouri developed a proof of concept for a nanocapsule — a microscopic container — capable of delivering a specific “payload” to a targeted location.

While beyond the scope of this study, the discovery has the potential to revolutionize the delivery of drugs, nutrients, and other chemicals in humans and plants. The power of the forward-thinking idea for this tiny delivery mechanism comes from its inventive structure, said Gary Baker, an associate professor in the Department of Chemistry and study co-author.

Unique Structure and Potential Applications

“We have the ability to uniformly prepare nanocapsules in a cookie-cutter fashion by joining them together using calcium metal ions as building blocks or linking logs,” Baker said. “By doing this, we can generate multiple identical reservoirs which can transport different types of substances, or payloads. Additionally, we have proof that the substances within can transfer through the barrier of these nanocapsules into an external solution.”

Comparison with Natural Phenomena

Baker compares the assembly of the conceptual device to how geckos walk up walls.

“Geckos have tiny structures on the pads of their feet which contain even smaller substructures, and those substructures continue to almost the nanoscaleThe nanoscale refers to a length scale that is extremely small, typically on the order of nanometers (nm), which is one billionth of a meter. At this scale, materials and systems exhibit unique properties and behaviors that are different from those observed at larger length scales. The prefix "nano-" is derived from the Greek word "nanos," which means "dwarf" or "very small." Nanoscale phenomena are relevant to many fields, including materials science, chemistry, biology, and physics.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>nanoscale level,” Baker said. “The combination of countless substructures interacting with a surface provides solid footing for the gecko. In much the same way, these nanocapsules are held together by a multiplicity of weak chemical interactions, but when added up together they provide a driving force for assembling the final structure.”

Advancements in Supramolecular Chemistry

The study represents an important step forward for the field of supramolecular chemistry, said Jerry Atwood, a Curators’ Distinguished Professor Emeritus of Chemistry and internationally recognized leader in the field.

“While we used fluorescent molecules, they are comparable in size and functionality to molecules that someone might want to use to deliver a substance to a particular site,” Atwood said. “Therefore, this achievement highlights its potential for future uses in science and medicine.”

Kanishka Sikligar, a postdoctoral fellow at MU, made the discovery. Sikligar, who came to MU to study with Atwood, was surprised by the team’s finding.

“The size of these nanocapsules pushes well beyond the boundary of what’s been previously achieved by other researchers in this area,” Sikligar said. “I am excited to see how this discovery will help expand the knowledge and understanding of this field.”

Reference: “Nanocapsules of unprecedented internal volume seamed by calcium ions” by Kanishka Sikligar, Steven P. Kelley, Durgesh V. Wagle, Piyuni Ishtaweera, Gary A. Baker and Jerry L. Atwood, 3 July 2023, Chemical Science.
DOI: 10.1039/D3SC01629C

Source: SciTechDaily