Press "Enter" to skip to content

Scientists “See” Spinning Quasiparticles in a 2D Magnet

The pairing between magnons and excitons will allow researchers to see spin directions, an important consideration for several quantum applications. Credit: Chung-Jui Yu

New research reveals that spinning quasiparticles, or magnons, light up when paired with a light-emitting quasiparticle, or exciton, with potential quantum information applications.

All magnets contain spinning quasiparticles called magnons. This is true of all magnets from the simple souvenirs hanging on your refrigerator to the discs that give your computer memory storage to the powerful versions used in research labs. The direction one magnon spins can influence that of its neighbor, which in turn affects the spin of its neighbor, and so on, yielding what are known as spin waves. Spin waves can potentially transmit information more efficiently than electricity, and magnons can serve as “quantum interconnects” that “glue” quantum bits together into powerful computers.

Although magnons have enormous potential, they are often difficult to detect without bulky pieces of lab equipment. According to Columbia researcher Xiaoyang Zhu, such setups are fine for conducting experiments, but not for developing devices, such as magnonic devices and so-called spintronics. However, seeing magnons can be made much simpler with the right material: a magnetic semiconductor called chromium sulfide bromide (CrSBr) that can be peeled into atomAn atom is the smallest component of an element. It is made up of protons and neutrons within the nucleus, and electrons circling the nucleus.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>atom-thin, 2D layers, synthesized in Department of Chemistry professor Xavier Roy’s lab.

“For the first time, we can see magnons with a simple optical effect.”
Xiaoyang Zhu

In a new article published in the journal Nature on September 7, Zhu and collaborators at Columbia, the University of WashingtonFounded in 1861, the University of Washington (UW, simply Washington, or informally U-Dub) is a public research university in Seattle, Washington, with additional campuses in Tacoma and Bothell. Classified as an R1 Doctoral Research University classification under the Carnegie Classification of Institutions of Higher Education, UW is a member of the Association of American Universities.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>University of Washington, New York UniversityFounded in 1831, New York University (NYU) is a private research university based in New York City.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>New York University, and Oak Ridge National Laboratory show that magnons in CrSBr can pair up with another quasiparticle called an exciton, which emits light, offering the researchers a mechanism to “see” the spinning quasiparticle.

As they perturbed the magnons with light, they observed oscillations from the excitons in the near-infrared range, which is nearly visible to the naked eye. “For the first time, we can see magnons with a simple optical effect,” Zhu said.

The results may be viewed as quantum transduction, or the conversion of one “quanta” of energy to another, said first author Youn Jun (Eunice) Bae, a postdoc in Zhu’s lab. The energy of excitons is four orders of magnitude larger than that of magnons; now, because they pair together so strongly, we can easily observe tiny changes in the magnons, Bae explained. This transduction may one day enable researchers to build quantum information networks that can take information from spin-based quantum bits—which generally need to be located within millimeters of each other—and convert it to light, a form of energy that can transfer information up to hundreds of miles via optical fibers.

Zhu said that the coherence time—how long the oscillations can last—was also remarkable, lasting much longer than the five-nanosecond limit of the experiment. The phenomenon could travel over seven micrometers and persist even when the CrSBr devices were made of just two atom-thin layers, raising the possibility of building nano-scale spintronic devices. These devices could one day be more efficient alternatives to today’s electronics. Unlike electrons in an electrical current that encounter resistance as they travel, no particles are actually moving in a spin wave.

From here, the scientists plan to explore CrSBr’s quantum information potential, as well as other material candidates. “In the MRSEC and EFRC, we are exploring the quantum properties of several 2D materials that you can stack like papers to create all kinds of new physical phenomena,” Zhu said.

For example, if magnon-exciton coupling can be found in other kinds of magnetic semiconductors with slightly different properties than CrSBr, they might emit light in a wider range of colors. “We’re assembling the toolbox to construct new devices with customizable properties,” Zhu said.

Reference: “Exciton-coupled coherent magnons in a 2D semiconductor” by Youn Jue Bae, Jue Wang, Allen Scheie, Junwen Xu, Daniel G. Chica, Geoffrey M. Diederich, John Cenker, Michael E. Ziebel, Yusong Bai, Haowen Ren, Cory R. Dean, Milan Delor, Xiaodong Xu, Xavier Roy, Andrew D. Kent and Xiaoyang Zhu, 7 September 2022, Nature.
DOI: 10.1038/s41586-022-05024-1

The work was supported by Columbia’s NSF-funded Materials Research Science and Engineering Center (MRSEC), with the material created in the DOE-funded Energy Frontier Research Center (EFRC).

Source: SciTechDaily