Press "Enter" to skip to content

Smashing Records: Astronomers Detect Fast Radio Burst From 8 Billion Light-Years Away

This artist’s impression (not to scale) illustrates the path of the fast radio burst FRB 20220610A, from the distant galaxy where it originated all the way to Earth, in one of the Milky Way’s spiral arms. The source galaxy of FRB 20220610A, pinned down thanks to ESO’s Very Large Telescope, appears to be located within a small group of interacting galaxies. It’s so far away its light took eight billion years to reach us, making FRB 20220610A the most distant fast radio burst found to date. Credit: ESO/M. Kornmesser

Astronomers have detected the most distant ‘fast radio burst’ (FRB) ever, providing a potential tool to measure the Universe’s hidden matter. Upcoming telescopes promise to uncover even more distant FRBs.

An international team has spotted a remote blast of cosmic radio waves lasting less than a millisecond. This ‘fast radio burst’ (FRB) is the most distant ever detected. Its source was pinned down by the European Southern Observatory’s (ESOCreated in 1962, the European Southern Observatory (ESO), is a 16-nation intergovernmental research organization for ground-based astronomy. Its formal name is the European Organization for Astronomical Research in the Southern Hemisphere.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>ESO) Very Large TelescopeThe Very Large Telescope array (VLT) is a visible and infrared wavelength telescope facility operated by the European Southern Observatory on Cerro Paranal in the Atacama Desert of northern Chile. It is the world's most advanced optical instrument, consisting of four Unit Telescopes with main mirrors of 8.2m diameter and four movable 1.8m diameter Auxiliary Telescopes.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Very Large Telescope (VLT) in a galaxy so far away that its light took eight billion years to reach us. The FRB is also one of the most energetic ever observed; in a tiny fraction of a second it released the equivalent of our Sun’s total emission over 30 years.

Breaking Previous Records

The discovery of the burst, named FRB 20220610A, was made in June last year by the ASKAP radio telescope in Australia[1] and it smashed the team’s previous distance record by 50 percent.

“Using ASKAP’s array of dishes, we were able to determine precisely where the burst came from,” says Stuart Ryder, an astronomer from Macquarie University in Australia and the co-lead author of the study published today in Science. “Then we used [ESO’s VLT] in Chile to search for the source galaxy,[2] finding it to be older and further away than any other FRB source found to date and likely within a small group of merging galaxies.”

Entire Arc of Milky Way VLT

The entire arc of Milky Way, full of gas and dust, star clusters, and emission nebulae, is a luminous background for the ESO-operated Very Large Telescope (VLT). Credit: M. Claro/ESO

Weighing the Universe With FRBs

The discovery confirms that FRBs can be used to measure the ‘missing’ matter between galaxies, providing a new way to ‘weigh’ the Universe.

Current methods of estimating the mass of the Universe are giving conflicting answers and challenging the standard model of cosmology. “If we count up the amount of normal matter in the Universe — the atoms that we are all made of — we find that more than half of what should be there today is missing,” says Ryan Shannon, a professor at the Swinburne University of Technology in Australia, who also co-led the study. “We think that the missing matter is hiding in the space between galaxies, but it may just be so hot and diffuse that it’s impossible to see using normal techniques.”

Understanding the Space Between Galaxies

“Fast radio bursts sense this ionized material. Even in space that is nearly perfectly empty they can ‘see’ all the electrons, and that allows us to measure how much stuff is between the galaxies,” Shannon says.

Finding distant FRBs is key to accurately measuring the Universe’s missing matter, as shown by the late Australian astronomer Jean-Pierre (‘J-P’) Macquart in 2020. “J-P showed that the further away a fast radio burst is, the more diffuse gas it reveals between the galaxies. This is now known as the Macquart relation. Some recent fast radio bursts appeared to break this relationship. Our measurements confirm the Macquart relation holds out to beyond half the known Universe,” says Ryder.

Future Prospects and Tools

“While we still don’t know what causes these massive bursts of energy, the paper confirms that fast radio bursts are common events in the cosmos and that we will be able to use them to detect matter between galaxies, and better understand the structure of the Universe,” says Shannon.

The result represents the limit of what is achievable with telescopes today, although astronomers will soon have the tools to detect even older and more distant bursts, pin down their source galaxies, and measure the Universe’s missing matter. The international Square Kilometre Array Observatory is currently building two radio telescopes in South Africa and Australia that will be capable of finding thousands of FRBs, including very distant ones that cannot be detected with current facilities. ESO’s Extremely Large Telescope, a 39-meter telescope under construction in the Chilean Atacama Desert, will be one of the few telescopes able to study the source galaxies of bursts even further away than FRB 20220610A.

Notes

  1. The ASKAP telescope is owned and operated by CSIROCSIRO stands for the Commonwealth Scientific and Industrial Research Organization. It is Australia's national science agency and one of the largest research agencies in the world. CSIRO conducts research in a wide range of fields, including agriculture, health, energy, and the environment, and aims to use its research to create economic, environmental, and social benefits for Australia and the world.
    <div class="text-gray-400 flex self-end lg:self-center justify-center mt-2 gap-4 lg:gap-1 lg:absolute lg:top-0 lg:translate-x-full lg:right-0 lg:mt-0 lg:pl-2 visible"> </div>” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>CSIRO
    , Australia’s national science agency, on Wajarri Yamaji Country in Western Australia.
  2. The team used data obtained with the FOcal Reducer and low dispersion Spectrograph 2 (FORS2), the X-shooter, and the High Acuity Wide-field K-band Imager (HAWK-I) instruments on ESO’s VLT. Data from the Keck Observatory in Hawai’i, US, was also used in the study.

Reference: “A luminous fast radio burst that probes the Universe at redshift 1” by S. D. Ryder, K. W. Bannister, S. Bhandari, A. T. Deller, R. D. Ekers, M. Glowacki, A. C. Gordon, K. Gourdji, C. W. James, C. D. Kilpatrick, W. Lu, L. Marnoch, V. A. Moss, J. X. Prochaska, H. Qiu, E. M. Sadler, S. Simha, M. W. Sammons, D. R. Scott, N. Tejos and R. M. Shannon, 19 October 2023, Science.
DOI: 10.1126/science.adf2678

The team is composed of S. D. Ryder (School of Mathematical and Physical Sciences, Macquarie University, Australia [SMPS]; Astrophysics and Space Technologies Research Centre, Macquarie University, Sydney, Australia [ASTRC]), K. W. Bannister (Australia Telescope National Facility, Commonwealth Science and Industrial Research Organisation, Space and Astronomy, Australia [CSIRO]), S. Bhandari (The Netherlands Institute for Radio Astronomy, the Netherlands; Joint Institute for Very Long Baseline Interferometry in Europe, the Netherlands), A. T. Deller (Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Australia [CAS]), R. D. Ekers (CSIRO; International Centre for Radio Astronomy Research, Curtin Institute of Radio Astronomy, Curtin University, Australia [ICRARFounded in 2009, the International Centre for Radio Astronomy Research (ICRAR) is an equal joint venture between Curtin University and The University of Western Australia. The ICRAR attracts researchers in radio astronomy, contributing to Australian and international scientific and technical programs for the international Square Kilometre Array (SKA) project.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>ICRAR]), M. Glowacki (ICRAR), A. C. Gordon (Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern UniversityEstablished in 1851, Northwestern University (NU) is a private research university based in Evanston, Illinois, United States. Northwestern is known for its McCormick School of Engineering and Applied Science, Kellogg School of Management, Feinberg School of Medicine, Pritzker School of Law, Bienen School of Music, and Medill School of Journalism. ” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Northwestern University, USA [CIERA]), K. Gourdji (CAS), C. W. James (ICRAR), C. D. Kilpatrick (CIERA; Department of Physics and Astronomy, Northwestern University, USA), W. Lu (Department of Astronomy, University of California, BerkeleyLocated in Berkeley, California and founded in 1868, University of California, Berkeley is a public research university that also goes by UC Berkeley, Berkeley, California, or Cal. It maintains close relationships with three DOE National Laboratories: Lawrence Berkeley National Laboratory, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>University of California, Berkeley, USA; Theoretical Astrophysics Center, University of California, Berkeley, USA), L. Marnoch (SMPS; ASTRC; CSIRO; Australian Research Council Centre of Excellence for All-Sky Astrophysics in 3 Dimensions, Australia), V. A. Moss (CSIRO), J. X. Prochaska (Department of Astronomy and Astrophysics, University of California, Santa Cruz, USA [Santa Cruz]; Kavli Institute for the Physics and Mathematics of the Universe, Japan), H. Qiu (SKA Observatory, Jodrell Bank, UK), E. M. Sadler (Sydney Institute for Astronomy, School of Physics, University of SydneyThe University of Sydney is a public research university located in Sydney, New South Wales, Australia. Founded in 1850, it is the oldest university in Australia and is consistently ranked among the top universities in the world. The University of Sydney has a strong focus on research and offers a wide range of undergraduate and postgraduate programs across a variety of disciplines, including arts, business, engineering, law, medicine, and science.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>University of Sydney, Australia; CSIRO), S. Simha (Santa Cruz), M. W. Sammons (ICRAR), D. R. Scott (ICRAR), N. Tejos (Instituto de Física, Pontificia Universidad Católica De Valparaíso, Chile) and R. M. Shannon (CAS).

Source: SciTechDaily