Press "Enter" to skip to content

Synapse Surprise: Two Sisters’ Misfortune Leads to Unsettling Parkinson’s Discovery

A Northwestern Medicine study challenges conventional beliefs about Parkinson’s disease. Previously, the degeneration of dopaminergic neurons was thought to trigger the disease. This new research suggests that the real instigators are dysfunctions in the neuron’s synapses, which occur even before neuronal degradation. Such findings emphasize the need for therapies targeting the synapses before the disease’s neuronal effects manifest.

Damage starts much earlier than the death of dopamine neurons, scientists report.

  • How two sisters’ misfortune led to discovery
  • Findings open a new avenue for therapies
  • Drugs need to target neuron synapses before neurons degenerate

A groundbreaking new Northwestern Medicine study challenges a common belief in what triggers Parkinson’s disease.

Degeneration of dopaminergic neurons is widely accepted as the first event that leads to Parkinson’s. However, the new study suggests that a dysfunction in the neuron’s synapses — the tiny gap across which a neuron can send an impulse to another neuron — leads to deficits in dopamine and precedes the neurodegeneration.

Parkinson’s disease affects 1% to 2% of the population and is characterized by resting tremor, rigidity, and bradykinesia (slowness of movement). These motor symptoms are due to the progressive loss of dopaminergic neurons in the midbrain.

A Shift in Therapeutic Strategies

The findings, which were published on September 15 in the journal Neuron, open a new avenue for therapies, the scientists said.

“We showed that dopaminergic synapses become dysfunctional before neuronal death occurs,” said lead author Dr. Dimitri Krainc, chair of neurology at Northwestern UniversityEstablished in 1851, Northwestern University (NU) is a private research university based in Evanston, Illinois, United States. Northwestern is known for its McCormick School of Engineering and Applied Science, Kellogg School of Management, Feinberg School of Medicine, Pritzker School of Law, Bienen School of Music, and Medill School of Journalism. ” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Northwestern University Feinberg School of Medicine and director of the Simpson Querrey Center for Neurogenetics. “Based on these findings, we hypothesize that targeting dysfunctional synapses before the neurons are degenerated may represent a better therapeutic strategy.”

The study investigated patient-derived midbrain neurons, which is critical because mouse and human dopamine neurons have a different physiology and findings in the mouse neurons are not translatable to humans, as highlighted in Krainc’s research recently published in Science.

Dysfunctional Synapses in Genetic Parkinson’s

Northwestern scientists found that dopaminergic synapses are not functioning correctly in various genetic forms of Parkinson’s disease. This work, together with other recent studies by Krainc’s lab, addresses one of the major gaps in the field: how different genes linked to Parkinson’s lead to degeneration of human dopaminergic neurons.

Understanding Neuronal Recycling

Imagine two workers in a neuronal recycling plant. It’s their job to recycle mitochondria, the energy producers of the cell, that are too old or overworked. If the dysfunctional mitochondria remain in the cell, they can cause cellular dysfunction. The process of recycling or removing these old mitochondria is called mitophagy. The two workers in this recycling process are the genes Parkin and PINK1. In a normal situation, PINK1 activates Parkin to move the old mitochondria into the path to be recycled or disposed of.

It has been well-established that people who carry mutations in both copies of either PINK1 or Parkin develop Parkinson’s disease because of ineffective mitophagy.

A Tale of Two Sisters

Two sisters had the misfortune of being born without the PINK1 gene, because their parents were each missing a copy of the critical gene. This put the sisters at high risk for Parkinson’s disease, but one sister was diagnosed at age 16, while the other was not diagnosed until she was 48.

The reason for the disparity led to an important new discovery by Krainc and his group. The sister who was diagnosed at 16 also had partial loss of Parkin, which, by itself, should not cause Parkinson’s.

“There must be a complete loss of Parkin to cause Parkinson’s disease. So, why did the sister with only a partial loss of Parkin get the disease more than 30 years earlier?” Krainc asked.

As a result, the scientists realized that Parkin has another important job that had previously been unknown. The gene also functions in a different pathway in the synaptic terminal — unrelated to its recycling work— where it controls dopamine release. With this new understanding of what went wrong for the sister, Northwestern scientists saw a new opportunity to boost Parkin and the potential to prevent the degeneration of dopamine neurons.

“We discovered a new mechanism to activate Parkin in patient neurons,” Krainc said. “Now, we need to develop drugs that stimulate this pathway, correct synaptic dysfunction and hopefully prevent neuronal degeneration in Parkinson’s.”

Reference: “Parkinson’s disease linked parkin mutation disrupts recycling of synaptic vesicles in human dopaminergic neurons” by Pingping Song, Wesley Peng, Veronique Sauve, Rayan Fakih, Zhong Xie, Daniel Ysselstein, Talia Krainc, Yvette C. Wong, Niccolò E. Mencacci, Jeffrey N. Savas, D. James Surmeier, Kalle Gehring and Dimitri Krainc, 15 September 2023, Neuron.
DOI: 10.1016/j.neuron.2023.08.018

The first author of the study is Pingping Song, research assistant professor in Krainc’s lab. Other authors are Wesley Peng, Zhong Xie, Daniel Ysselstein, Talia Krainc, Yvette Wong, Niccolò Mencacci, Jeffrey Savas, and D. James Surmeier from Northwestern and Kalle Gehring from McGill University.

This work was supported by National Institutes of HealthThe National Institutes of Health (NIH) is the primary agency of the United States government responsible for biomedical and public health research. Founded in 1887, it is a part of the U.S. Department of Health and Human Services. The NIH conducts its own scientific research through its Intramural Research Program (IRP) and provides major biomedical research funding to non-NIH research facilities through its Extramural Research Program. With 27 different institutes and centers under its umbrella, the NIH covers a broad spectrum of health-related research, including specific diseases, population health, clinical research, and fundamental biological processes. Its mission is to seek fundamental knowledge about the nature and behavior of living systems and the application of that knowledge to enhance health, lengthen life, and reduce illness and disability.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>National Institutes of Health grants R01NS076054, R3710 NS096241, R35 NS122257 and NS121174, all from the National Institute of Neurological Disorders and Stroke.

Source: SciTechDaily