Press "Enter" to skip to content

The Brain Isn’t Symmetrical – Researchers Reveal New Insight About the Brain

The scientists found that asymmetry is influenced by a person’s experiences.

The brain’s hemispheres are not equal.

At first glance, the human body seems to be symmetrical: two arms, two legs, two eyes, two ears, and even the nose and mouth appear to be mirrored on an imaginary axis that divides most people’s faces. Finally, the brain is split into two nearly equal-sized halves, and the furrows and bulges follow a similar pattern. The initial impression, however, is misleading since there are small, functionally relevant differences between the left and right sides of the different brain regions. 

The two hemispheres have distinct functional specializations. For instance, most individuals process language mostly in their left hemisphere whereas spatial attention is primarily processed in their right hemisphere. Work can thus be distributed more effectively to both sides, and the overall range of tasks is expanded.

However, this so-called lateralization, or the tendency for brain regions to process certain functions more in the left or right hemisphere, differs between people. And not only in the minority whose brains are mirror-inverted in comparison to the majority. Even people with classically arranged brains have varying degrees of asymmetry. Previous research has indicated that this, in turn, may have an effect on the functions themselves.

For instance, dyslexia is characterized by a lack of left asymmetry in certain language areas. Inadequate brain lateralization may also contribute to conditions such as schizophrenia, autism spectrum disorders, and children’s hyperactivity.

Until now, however, it hasn’t been clear how much brain asymmetry variance, across individuals, is heritable and how much is due to different demands. Furthermore, are similar features of brain asymmetry also present in monkeys?

Scientists at the Max Planck Institute for Human Cognitive and Brain Sciences (MPI CBS) and Forschungszentrum Juelich (FZJ) have now investigated the asymmetry of functional gradients, describing axes of smooth variations of brain function across the cortex. They found that there are subtle variations in the functional organization of brain regions on the left and right sides of the brain. On the left side, regions involved in language processing are most distant from those implicated in vision and sensation.

Whereas on the right side the so-called frontoparietal network, responsible for attention and working memory, for example, is most distant from those sensory regions. The researchers also found that individual differences in these functional arrangements were heritable, meaning that they are partly influenced by genetic factors. At the same time, a large portion of this asymmetry in human brains could not be accounted for by genetic factors. This means some asymmetry is influenced, at least in part, by the person’s experience.

In addition, the team found that human brains are more asymmetric than those of monkeys. “It is likely that the observed functional asymmetry reflects the interplay of both genetic and non-genetic effects derived from personal experiences” explains Bin Wan, a Ph.D. student at MPI CBS and lead author of the study recently published in the journal eLife. Indeed, in older people, they observed reduced right-ward asymmetry, suggesting subtle variation across the lifespan.

“We want to understand why subtle differences between the left and right hemispheres are relevant for language and attention and implicated in various developmental disorders”, explains Sofie Valk, head of the study and the Cognitive Neurogenetics research group at MPI CBS. “If we understand the heritability of the asymmetry, this would be an initial step towards understanding the role of genetic and environmental factors in shaping this trait. We may eventually be able to figure out where something goes wrong when the difference between left and right is disturbed.”

The researchers investigated these connections using two databases, one containing human brain scans, including twins, and the other containing brain scans of 19 macaque monkeys. By comparing monozygotic twins, dizygotic twins, and unrelated individuals, they were able to determine how siblings differ from each other, and therefore, what is not genetically determined but due to environmental influences.

In turn, the comparison with macaques made it clear where differences between humans and monkeys lie and which have arisen through evolution. The scientists calculated these differences with the help of a so-called low-dimensional, functional brain connectivity organization. This reveals the degree to which separate brain regions can work together. The researchers computed this organizational feature in each hemisphere and then calculated the asymmetry index by subtracting right from left.

Reference: “Heritability and cross-species comparisons of human cortical functional organization asymmetry” by Bin Wan, Şeyma Bayrak, Ting Xu, H Lina Schaare, Richard AI Bethlehem, Boris C Bernhardt and Sofie L Valk, 29 July 2022, eLife.
DOI: 10.7554/eLife.77215

The study was funded by the Max Planck Society, the Sick Kids Foundation, the Natural Sciences and Engineering Research Council of Canada, the Canadian Institutes of Health Research, the Azrieli Center for Autism Research, the Canada First Research Excellence Fund, and the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity. 

Source: SciTechDaily