Press "Enter" to skip to content

Tiny Star Unleashes Monstrous Beam of Matter and Anti-Matter

J2030 X-Ray and Optical. Credit: X-ray: NASA/CXC/Stanford Univ./M. de Vries; Optical: NSF/AURA/Gemini Consortium

  • A city-sized collapsed star has generated a beam of matter and antimatter that stretches for trillions of miles.
  • Data from NASAEstablished in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. It's vision is "To discover and expand knowledge for the benefit of humanity."” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>NASA’s Chandra X-ray Observatory revealed the full extent of this beam, or filament.
  • This discovery could help explain the presence of positrons detected throughout the Milky WayThe Milky Way is the galaxy that contains the Earth, and is named for its appearance from Earth. It is a barred spiral galaxy that contains an estimated 100-400 billion stars and has a diameter between 150,000 and 200,000 light-years.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Milky Way galaxy and here on Earth.
  • Positrons are the antimatter counterpart to the electron.

[embedded content]

This image from NASA’s Chandra X-ray Observatory and ground-based optical telescopes shows an extremely long beam, or filament, of matter and antimatter extending from a relatively tiny pulsarFirst observed at radio frequencies, a pulsar is a rotating neutron star that emits regular pulses of radiation. Astronomers developed three categories for pulsars: accretion-powered pulsars, rotation-powered pulsars, and nuclear-powered pulsars; and have since observed them at X-ray, optical, and gamma-ray energies.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>pulsar. With its tremendous scale, this beam may help explain the surprisingly large numbers of positrons, the antimatter counterparts to electrons, scientists have detected throughout the Milky Way galaxy.

In the image at the top of the page, the panel on the left displays about one third the length of the beam from the pulsar known as PSR J2030+4415 (J2030 for short), which is located about 1,600 light years from Earth. J2030 is a dense, city-sized object that formed from the collapse of a massive star and currently spins about three times per second. X-rays from Chandra (blue) show where particles flowing from the pulsar along magnetic field lines are moving at about a third the speed of light. A close-up view of the pulsar in the right panel shows the X-rays created by particles flying around the pulsar itself. As the pulsar moves through space at about a million miles an hour, some of these particles escape and create the long filament. In both panels, optical light data from the Gemini telescope on Mauna Kea in Hawaii have been used and appear red, brown, and black. The full length of the filament is shown in a separate image (below).

Pulsar PSR J2030+4415 X-Ray and Optical Wide Field

J2030 X-Ray and Optical wide fieldCredit: NASA/CXC/Stanford Univ./M. de Vries

The vast majority of the Universe consists of ordinary matter rather than antimatter. Scientists, however, continue to find evidence for relatively large numbers of positrons in detectors on Earth, which leads to the question: what are possible sources of this antimatter? The researchers in the new Chandra study of J2030 think that pulsars like it may be one answer. The combination of two extremes — fast rotation and high magnetic fields of pulsars — lead to particle acceleration and high energy radiation that creates electron and positron pairs. (The usual process of converting mass into energy famously determined by Einstein’s E = mc2 equation is reversed, and energy is converted into mass.)

Pulsar PSR J2030+4415 X-Ray Full Field

J2030 X-Ray full field. Credit: NASA/CXC/Stanford Univ./M. de Vries

Pulsars generate winds of charged particles that are usually confined within their powerful magnetic fields. The pulsar is traveling through interstellar space at about half a million miles per hour, with the wind trailing behind it. A bow shock of gas moves along in front of the pulsar, similar to the pile-up of water in front of a moving boat. However, about 20 to 30 years ago the bow shock’s motion appears to have stalled and the pulsar caught up to it.

Pulsar PSR J2030+4415 X-Ray and Optical Close Up

J2030 X-Ray and Optical close-up. Credit: X-ray: NASA/CXC/Stanford Univ./M. de Vries; Optical: NSF/AURA/Gemini Consortium

The ensuing collision likely triggered a particle leak, where the pulsar wind’s magnetic field linked up with the interstellar magnetic field. As a result, the high-energy electrons and positrons could have squirted out through a “nozzle” formed by connection into the Galaxy.

[embedded content]

Previously, astronomers have observed large halos around nearby pulsars in gamma-ray light that imply energetic positrons generally have difficulty leaking out into the Galaxy. This undercut the idea that pulsars explain the positron excess that scientists detect. However, pulsar filaments that have recently been discovered, like J2030, show that particles actually can escape into interstellar space, and eventually could reach Earth.

For more on this discovery, see Tiny Star Unleashes Gargantuan Beam of Matter and Anti-Matter That Stretches for 40 Trillion Miles.

Reference: “The Long Filament of PSR J2030+4415” by Martijn de Vries and Roger W. Romani, Accepted, The Astrophysical Journal.
arXiv:2202.03506

A paper describing these results, authored by Martjin de Vries and Roger Romani of Stanford University, will appear in The Astrophysical Journal. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

Source: SciTechDaily