Press "Enter" to skip to content

Unprecedented Recovery: Drug Helps Treat Spinal Cord Injuries

Researchers discovered that AZD1236, a drug developed by AstraZeneca, might reduce damage after spinal cord injury.

New hope for spinal cord injury treatment

Scientists from the University of Birmingham found that suppressing the inflammatory response in the spinal cord may minimize damage following spinal cord injury.

Their findings, recently published in Clinical and Translational Medicine, show that AZD1236, an AstraZeneca medicine, may considerably reduce ‘secondary damage’ produced by the body’s response to spinal cord injury (SCI).

Animal models were used by researchers led by Professor Zubair Ahmed, Professor of Neuroscience and Section Lead for the Neuroscience and Ophthalmology Section at The University’s Institute of Inflammation and Ageing, to demonstrate that AZD1236 can promote significant nerve regeneration, with a dramatic 80% preservation in nerve function following spinal cord compression injury.

Crucially, this translated into an 85% improvement in movement and sensation. These dramatic effects were observed following only three days of treatment with AZD1236, starting within 24 hours post-injury. Within three weeks, the AZD1236 treated animals showed unprecedented recovery, while controls still showed significant deficits at six weeks post-injury.

One of the key drivers of SCI secondary damage is the breakdown of the blood-spinal cord barrier (BSCB). This results in oedema (excess fluid build-up around the spinal cord) and triggers an inflammatory response that can ultimately hinder the healing process, and lead to nerve cell death.

AZD1236 is a potent and selective inhibitor of two enzymes, MMP-9 and MMP-12, which are implicated in the inflammatory process.

The researchers demonstrated that AZD1236 halts SCI-induced oedema, and reduces BSCB breakdown and scarring at the site of the injury. They also examined the effect of AZD1236 dosing on MMP-9 and MMP-12 activity in both the bloodstream and cerebrospinal fluid, which surrounds the spinal cord.

Here they demonstrated significant suppression of enzyme activity after both oral dosing, and intrathecal dosing (injection into the spinal canal). Oral dosing reduced enzyme activity by 90% in serum, and 69-74% in the cerebrospinal fluid. Unsurprisingly, intrathecal injection delivered higher levels (88-90%) of suppression in the cerebrospinal fluid.

Further studies showed that AZD1236 suppressed the formation of pro-inflammatory cytokines (molecules that are known to contribute to the development of long-lasting neuropathic pain, which often follows SCI) by 85-95%. AZD1236 was also found to be 82% more effective at alleviating SCI-induced neuropathic pain sensitivity to cold, heat, and touch when compared to currently used pain medications such as pregabalin (Lyrica) and gabapentin.

Professor Ahmed commented: “There is currently no reparative drug available for SCI patients, treatments only provide symptomatic relief and do not tackle the underlying molecular mechanisms that cause or contribute to oedema and blood-spinal cord barrier breakdown. This drug has the potential to be a first-in-class treatment against some of the key pathological drivers of SCI and could revolutionize the prospects for recovery of SCI patients”.

Hitesh Sanganee, Executive Director, Discovery Sciences, AstraZeneca said: “The work by Professor Ahmed and his team has been supported through our Open Innovation Programme and represents a very successful collaboration between academia and industry to bring about the possibility of real benefits to patients affected by SCI, an area of great medical need. Exploring the potential of AZD1236 for this new indication represents a great outcome for our Open Innovations program and aligns with our ethos of “sharing ideas and enabling scientific innovation to cross boundaries between academia and industry will help to translate innovative ideas into scientific breakthroughs and potential new medicines more quickly.”

The University of BirminghamFounded in 1825 as the Birmingham School of Medicine and Surgery, the University of Birmingham (informally Birmingham University) is a public research university located in Edgbaston, Birmingham, United Kingdom. It is a founding member of both the Russell Group, an association of public research universities in the United Kingdom, and Universitas 21, an international network of research-intensive universities. ” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>University of Birmingham Enterprise has filed a patent application covering selective combined inhibition activity or expression of both matrix metalloproteinase MMP-9 (gelatinase B) and MMP-12 (macrophage metalloelastase) after SCI or related injury to neurological tissue.

The University of Birmingham Enterprise is now seeking investors and partners to take this promising therapeutic to clinical trials.

Reference: “Clinic-ready inhibitor of MMP-9/-12 restores sensory and functional decline in rodent models of spinal cord injury” by Zubair Ahmed, Sharif Alhajlah, Adam M. Thompson and Rebecca J. Fairclough, 20 May 2022, Clinical and Translational Medicine.
DOI: 10.1002/ctm2.884

Source: SciTechDaily