Press "Enter" to skip to content

Webb Space Telescope’s Mid-Infrared Instrument Cooldown Continues

This artist’s conception shows the fully unfolded James Webb Space Telescope in space. Credit: Adriana Manrique Gutierrez, NASA Animator

“The Mid-Infrared Instrument (MIRI) and other Webb instruments have been cooling by radiating their thermal energy into the dark of space for the bulk of the last three months. The near-infrared instruments will operate at about 34 to 39 kelvins, cooling passively. But MIRI’s detectors will need to get a lot colder still, to be able to detect longer wavelength photons. This is where the MIRI cryocooler comes in.

By necessity, MIRI’s detectors are built using a special formulation of Arsenic-doped Silicon (Si:As), which need to be at a temperature of less than 7 kelvins to operate properly. This temperature is not possible by passive means alone, so Webb carries a “cryocooler” that is dedicated to cooling MIRI’s detectors. Credit: NASA/JPL-Caltech

“Over the last couple weeks, the cryocooler has been circulating cold helium gas past the MIRI optical bench, which will help cool it to about 15 kelvins. Soon, the cryocooler is about to experience the most challenging days of its mission. By operating cryogenic valves, the cryocooler will redirect the circulating helium gas and force it through a flow restriction. As the gas expands when exiting the restriction, it becomes colder, and can then bring the MIRI detectors to their cool operating temperature of below 7 kelvins. But first, the cryocooler must make it through the ‘pinch point’ – the transition through a range of temperatures near 15 kelvins, when the cryocooler’s ability to remove heat is at its lowest. Several time-critical valve and compressor operations will be performed in rapid succession, adjusted as indicated by MIRI cryocooler temperature and flow rate measurements. What is particularly challenging is that after the flow redirection, the cooling ability gets better as the temperature gets lower. On the flip side, if the cooling is not immediately achieved due to, for example, larger than modeled heat loads, MIRI will start warming.

“Once the cryocooler overcomes the remaining heat loads, it will settle into its lower-power steady science operation state for the rest of the mission. This pinch point event has been extensively practiced in the cryocooler testbed at NASAEstablished in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. It's vision is "To discover and expand knowledge for the benefit of humanity."” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>NASA’s Jet Propulsion Laboratory (JPLThe Jet Propulsion Laboratory (JPL) is a federally funded research and development center managed for NASA by the California Institute of Technology (Caltech). The laboratory's primary function is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA's Deep Space Network. JPL implements programs in planetary exploration, Earth science, space-based astronomy and technology development, while applying its capabilities to technical and scientific problems of national significance.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>JPL), which manages the MIRI cryocooler, as well as during Webb testing at the agency’s Goddard Space Flight Center and Johnson Space Center. Performing it on orbit will be supported by the operations team comprised of personnel from JPL, Goddard, and the Space Telescope Science Institute. The MIRI cryocooler was developed by Northrop Grumman Space Systems. MIRI was developed as a 50/50 partnership between NASA and ESA (European Space Agency), with JPL leading the U.S. efforts and a multi-national consortium of European astronomical institutes contributing for ESA,” said Konstantin Penanen and Bret Naylor, cryocooler specialists, NASA JPL.

“MIRI stands out from Webb’s other instruments because it operates at much longer infrared wavelengths, compared to the other instruments that all begin with an ‘N’ for ‘near-infrared.’ MIRI will support the instrument suite to explore the infrared universe with depth and detail that are far beyond anything that has been available to astronomers to date.

“The imager promises to reveal astronomical targets ranging from nearby nebulae to distant interacting galaxies with a clarity and sensitivity far beyond what we’ve seen before. Our grasp on these glittering scientific treasures relies on MIRI being cooled to a temperature below the rest of the observatory, using its own dedicated refrigerator. Exoplanets at temperatures similar to Earth will shine most brightly in mid-infrared light. MIRI is therefore equipped with four coronagraphs, which have been carefully designed to detect such planets against the bright glare of their parent stars. The detailed colors of exo-giant planets (similar to our own JupiterJupiter is the largest planet in the solar system and the fifth planet from the sun. It is a gas giant with a mass greater then all of the other planets combined. Its name comes from the Roman god Jupiter.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Jupiter) can then be measured by MIRI’s two spectrometers to reveal chemical identities, abundances, and temperatures of the gases of their atmospheres (including water, ozone, methane, ammonia, and many more).

MIRI is inspected in the giant clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in 2012. Credit: NASA/Chris Gunn

“Why so cold? MIRI’s state-of-the-art light sensitive detectors that are tuned to work in the mid-infrared are blind unless they are cooled below 7 kelvins (-266 degrees CelsiusThe Celsius scale, also known as the centigrade scale, is a temperature scale named after the Swedish astronomer Anders Celsius. In the Celsius scale, 0 °C is the freezing point of water and 100 °C is the boiling point of water at 1 atm pressure.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Celsius, or -447 degrees FahrenheitThe Fahrenheit scale is a temperature scale, named after the German physicist Daniel Gabriel Fahrenheit and based on one he proposed in 1724. In the Fahrenheit temperature scale, the freezing point of water freezes is 32 °F and water boils at 212 °F, a 180 °F separation, as defined at sea level and standard atmospheric pressure. ” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Fahrenheit). For contrast, a standard domestic freezer cools its contents to about 255 kelvins (-18 degrees Celsius, or -0.7 degrees Fahrenheit). At higher temperatures, any signal that may be detected from the sky is lost beneath the signal from its own internally generated ‘dark current.’ Even if the detectors are cooled, Webb images would still be swamped by the glow of thermal infrared light emitted by MIRI’s own mirrors and aluminum structure if they are to get warmer than 15 kelvins (-258 degrees Celsius, or -433 degrees Fahrenheit). The engineering solution was to stand MIRI off from the instrument mounting structure behind Webb’s primary mirror like a high-tech metal spider on six carbon fiber legs. These insulate MIRI from the much hotter telescope (where 45 kelvins, or -228 degrees Celsius/-379 degrees Fahrenheit, qualifies as hotter). The instrument’s body is also swathed in a shiny aluminum-coated thermal blanket, which reflects the radiant heat of its surroundings.

“Getting this instrument cold is one of the last major challenges faced by Webb before the MIRI team can truly relax, and passing through the cooler’s ‘pinch point’ will be the most daunting step in this challenge. At that time, the cooler will have pulled out almost all of the heat left in MIRI’s 100 kilograms (220 pounds) of metal and glass from that tropical launch day morning, three months ago. MIRI will be the last of Webb’s four instruments to open its eyes on the universe,” said Alistair Glasse, Webb-MIRI Instrument Scientist, UK Astronomy Technology Centre and Macarena Garcia Marin, MIRI Instrument and Calibration Scientist, ESA.

Source: SciTechDaily