Press "Enter" to skip to content

Blast from the Past: Historic Wind Tunnel Tests NASA’s Mars Ascent Vehicle Rocket

This illustration shows NASA’s Mars Ascent Vehicle (MAV) in powered flight. The MAV will carry tubes containing Martian rock and soil samples into orbit around Mars, where ESA’s Earth Return Orbiter spacecraft will enclose them in a highly secure containment capsule and deliver them to Earth. Credit: NASA

The MarsMars is the second smallest planet in our solar system and the fourth planet from the sun. It is a dusty, cold, desert world with a very thin atmosphere. Iron oxide is prevalent in Mars' surface resulting in its reddish color and its nickname "The Red Planet." Mars' name comes from the Roman god of war.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Mars Ascent Vehicle team completed crucial wind tunnel tests at NASAEstablished in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is "To discover and expand knowledge for the benefit of humanity." Its core values are "safety, integrity, teamwork, excellence, and inclusion." NASA conducts research, develops technology and launches missions to explore and study Earth, the solar system, and the universe beyond. It also works to advance the state of knowledge in a wide range of scientific fields, including Earth and space science, planetary science, astrophysics, and heliophysics, and it collaborates with private companies and international partners to achieve its goals.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>NASA’s facility, paving the way for the first rocket launch from Mars. This joint effort between NASA and ESA aims to return Martian samples to Earth by the early 2030s, offering insights into Mars’s ancient history and potential microbial life.

The MAV (Mars Ascent Vehicle) team recently completed wind tunnel testing at NASA’s Marshall Space Flight Center in a facility that has been a critical part of NASA missions going all the way back to the Apollo program.

The same facility that provided valuable testing for NASA missions to low-Earth orbit and the Moon is now helping the agency prepare to launch the first rocket from Mars. The MAV is an important part of the joint plan between NASA and ESA (European Space AgencyThe European Space Agency (ESA) is an intergovernmental organization dedicated to the exploration and study of space. ESA was established in 1975 and has 22 member states, with its headquarters located in Paris, France. ESA is responsible for the development and coordination of Europe's space activities, including the design, construction, and launch of spacecraft and satellites for scientific research and Earth observation. Some of ESA's flagship missions have included the Rosetta mission to study a comet, the Gaia mission to create a 3D map of the Milky Way, and the ExoMars mission to search for evidence of past or present life on Mars.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>European Space Agency) to bring scientifically selected Martian samples to Earth in the early 2030s.

Mars Ascent Vehicle Scale Model Wind Tunnel Test

A scale model of the Mars Ascent Vehicle is loaded by Wind Tunnel Test Engineer Sam Schmitz into the trisonic wind tunnel at NASA’s Marshall Space Flight Center for testing. The 14-by-14-inch tunnel has been used to test launch vehicle configurations for Artemis, Redstone, Jupiter-C, Saturn, and more. Credit: NASA/Jonathan Deal

Aerodynamics and MAV’s Structure

MAV aeroacoustics lead Annie Catherine Barnes, who served as co-lead for the July testing campaign, said the team tested scale models at multiple angles inside the wind tunnel to see how airflow might affect MAV’s structure. Barnes compared it to turbulence on an airplane.

[embedded content]
A scale model of the Mars Ascent Vehicle is tested for in the trisonic wind tunnel at Marshall. The tunnel’s test sections are only 14 inches in height and width but can achieve wind speeds of up to Mach 5. Credit: NASA

“We’re looking for areas of turbulent flow for launch vehicles,” she said. “We’re looking for shock oscillations and large areas of pressure fluctuation that can cause a structural response.”

The team will use data from the July testing campaign and other analyses to form a better estimate of the environments MAV would face as it becomes the first vehicle to launch from the surface of another planet.

Mars Sample Retrieval Lander Concept Illustration

This illustration shows a concept for a proposed NASA Sample Retrieval Lander that would carry a small rocket (about 10 feet, or 3 meters, tall) called the Mars Ascent Vehicle to the Martian surface. After being loaded with sealed tubes containing samples of Martian rocks and soil collected by NASA’s Perseverance rover, the rocket would launch into Mars orbit. The samples would then be ferried to Earth for detailed analysis. Credit: NASA/JPL-Caltech

Mission Objectives and Partnerships

MAV supports the planned Mars Sample Return campaign, which would bring scientifically selected samples to Earth for study using the most sophisticated instrumentation around the world. This strategic partnership with ESA is developing the technology and the preliminary designs for missions that would accomplish the first return samples from another planet. The samples currently being collected by NASA’s Perseverance rover during its exploration of an ancient river delta have the potential to reveal the early evolution of Mars, including the potential for ancient microbial life.

Managed at Marshall, the MAV would launch aboard the Sample Retrieval Lander from Earth for a two-year journey to Mars. It would remain on the surface of Mars for nearly a year of receiving the samples collected by Perseverance.

Earth Return Orbiter Artist's Impression

Artist’s impression of ESA’s Earth Return Orbiter. Credit: ESA/ATG Medialab

After the Sample Transfer Arm on the lander loads the samples into a container in the rocket, MAV would launch from Mars into orbit around the planet, releasing the sample container for the ESA-developed Earth Return Orbiter to capture.

The samples are targeted to arrive on Earth in the early 2030s. The Mars Sample Return Program is managed by NASA’s Jet Propulsion Laboratory (JPLThe Jet Propulsion Laboratory (JPL) is a federally funded research and development center that was established in 1936. It is owned by NASA and managed by the California Institute of Technology (Caltech). The laboratory's primary function is the construction and operation of planetary robotic spacecraft, though it also conducts Earth-orbit and astronomy missions. It is also responsible for operating NASA's Deep Space Network. JPL implements programs in planetary exploration, Earth science, space-based astronomy and technology development, while applying its capabilities to technical and scientific problems of national significance.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>JPL) in Southern California.

Source: SciTechDaily