Press "Enter" to skip to content

E=mc² Comes Alive: Simulating Matter Creation From Laser Light

Osaka University researchers have simulated photon-photon collisions with lasers, potentially paving the way for generating matter from light in labs. This quantum physics advancement holds promise for understanding the universe’s composition and discovering new physics. (Artist’s concept.) Credit: SciTechDaily.com

A team led by researchers at Osaka University and UC, San Diego has used simulations to demonstrate how one can experimentally produce matter solely from light, which in the future might help test long-standing theories on the composition of the universe.

One of the most striking predictions of quantum physics is that matter can be generated solely from light (i.e., photons), and in fact, the astronomical bodies known as pulsars achieve this feat. Directly generating matter in this manner has not been achieved in a laboratory, but it would enable further testing of the theories of basic quantum physics and the fundamental composition of the universe.

In a study recently published in Physical Review LettersPhysical Review Letters (PRL) is a peer-reviewed scientific journal published by the American Physical Society. It is one of the most prestigious and influential journals in physics, with a high impact factor and a reputation for publishing groundbreaking research in all areas of physics, from particle physics to condensed matter physics and beyond. PRL is known for its rigorous standards and short article format, with a maximum length of four pages, making it an important venue for rapid communication of new findings and ideas in the physics community.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>Physical Review Letters, a team led by researchers at Osaka University has simulated conditions that enable photonA photon is a particle of light. It is the basic unit of light and other electromagnetic radiation, and is responsible for the electromagnetic force, one of the four fundamental forces of nature. Photons have no mass, but they do have energy and momentum. They travel at the speed of light in a vacuum, and can have different wavelengths, which correspond to different colors of light. Photons can also have different energies, which correspond to different frequencies of light.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>photon–photon collisions, solely by using lasers. The simplicity of the setup and ease of implementation at presently available laser intensities make it a promising candidate for near-future experimental implementation.

Self-Organized Photon Collider

Image of self-organized photon collider driven by an intense laser pulse propagating in a plasma. Credit: Yasuhiko Sentoku

Photon–photon collision is theorized to be a fundamental means by which matter is generated in the universe, and it arises from Einstein’s well-known equation E=mc2. In fact, researchers have indirectly produced matter from light: by high-speed acceleration of metal ions such as gold into one another. At such high speeds, each ion is surrounded by photons, and upon grazing past each other, matter and antimatter are produced.

However, it is challenging to produce matter experimentally in modern laboratories through the sole use of laser light because of the extremely high-power lasers required. Simulating how this feat might be achieved in a laboratory could bring about an experimental breakthrough, so that’s what the researchers set out to do.

“Our simulations demonstrate that, when interacting with the intense electromagnetic fields of the laser, dense plasmaPlasma is one of the four fundamental states of matter, along with solid, liquid, and gas. It is an ionized gas consisting of positive ions and free electrons. It was first described by chemist Irving Langmuir in the 1920s.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]” tabindex=”0″ role=”link”>plasma can self-organize to form a photon–photon collider,” explains Dr. Sugimoto, lead author of the study. “This collider contains a dense population of gamma rays, ten times denser than the density of electrons in the plasma and whose energy is a million times greater than the energy of the photons in the laser.”

Self-Organized Photon Collider Driven by an Intense Laser Pulse

Self-organized photon collider driven by an intense laser pulse (a) plasma density, (b) magnetic channel, (c) angular distribution of emitted photons. Credit: Physical Review Letters

Photon–photon collisions in the collider produce electron–positron pairs, and the positrons are accelerated by a plasma electric field created by the laser. This results in a positron beam.

“This is the first simulation of accelerating positrons from the linear Breit–Wheeler process under relativistic conditions,” says Prof Arefiev, co-author of UCSD. “We feel that our proposal is experimentally feasible, and we look forward to real-world implementation.” Dr Vyacheslav Lukin, a program director at the US National Science Foundation which supported the work, says “This research shows a potential way to explore the mysteries of the universe in a laboratory setting. The future possibilities at today’s and tomorrow’s high-power laser facilities just became even more intriguing.”

Applications of this work to the fictional matter–energy conversion technology of Star Trek remain just that: fiction. Nevertheless, this work has the potential to help experimentally confirm theories of the composition of the universe, or perhaps even help discover previously unknown physics.

Reference: “Positron Generation and Acceleration in a Self-Organized Photon Collider Enabled by an Ultraintense Laser Pulse” by K. Sugimoto, Y. He, N. Iwata, I-L. Yeh, K. Tangtartharakul, A. Arefiev and Y. Sentoku, 9 August 2023, Physical Review Letters.
DOI: 10.1103/PhysRevLett.131.065102

Source: SciTechDaily