Press "Enter" to skip to content

No More Waiting: Breathalyzer-Style Test for Instant COVID Results

Benjamin Sumlin, PhD, a senior scientist at Washington University in St. Louis, blows into a device designed by researchers at the university. The device — a breath test that uses a biosensor — could become a tool for use in doctors’ offices to quickly diagnose people infected with the virus that causes COVID-19. Credit: Chakrabarty lab/Washington University

A fast-acting breath test for COVID-19First identified in 2019 in Wuhan, China, COVID-19, or Coronavirus disease 2019, (which was originally called "2019 novel coronavirus" or 2019-nCoV) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has spread globally, resulting in the 2019–22 coronavirus pandemic.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>COVID-19, using a llama-derived nanobody, produces results in less than a minute.

Scientists at Washington University in St. Louis have developed a breath test that quickly identifies those who are infected with the virusA virus is a tiny infectious agent that is not considered a living organism. It consists of genetic material, either DNA or RNA, that is surrounded by a protein coat called a capsid. Some viruses also have an outer envelope made up of lipids that surrounds the capsid. Viruses can infect a wide range of organisms, including humans, animals, plants, and even bacteria. They rely on host cells to replicate and multiply, hijacking the cell's machinery to make copies of themselves. This process can cause damage to the host cell and lead to various diseases, ranging from mild to severe. Common viral infections include the flu, colds, HIV, and COVID-19. Vaccines and antiviral medications can help prevent and treat viral infections.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>virus that causes COVID-19. The device requires only one or two breaths and provides results in less than a minute.

The study is available online in the journal ACS Sensors. The same group of researchers recently published a paper in the journal Nature Communications<em>Nature Communications</em> is a peer-reviewed, open-access, multidisciplinary, scientific journal published by Nature Portfolio. It covers the natural sciences, including physics, biology, chemistry, medicine, and earth sciences. It began publishing in 2010 and has editorial offices in London, Berlin, New York City, and Shanghai. ” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Nature Communications about an air monitor they had built to detect airborne SARS-CoV-2 — the virus that causes COVID-19 — within about five minutes in hospitals, schools and other public places.

Breath Test Applications

The new study is about a breath test that could become a tool for use in doctors’ offices to quickly diagnose people infected with the virus. If and when new strains of COVID-19 or other airborne pathogenic diseases arise, such devices also could be used to screen people at public events. The researchers said the breath test also has the potential to help prevent outbreaks in situations where many people live or interact in close quarters — for example aboard ships, in nursing homes, in residence halls at colleges and universities, or on military bases.

“With this test, there are no nasal swabs and no waiting 15 minutes for results, as with home tests,” said co-corresponding author Rajan K. Chakrabarty, PhD, the Harold D. Jolley Career Development Associate Professor of Energy, Environment & Chemical Engineering at the McKelvey School of Engineering. “A person simply blows into a tube in the device, and an electrochemical biosensor detects whether the virus is there. Results are available in about a minute.”

Technology Behind the Test

The biosensor used in the device was adapted from an Alzheimer’sAlzheimer's disease is a disease that attacks the brain, causing a decline in mental ability that worsens over time. It is the most common form of dementia and accounts for 60 to 80 percent of dementia cases. There is no current cure for Alzheimer's disease, but there are medications that can help ease the symptoms.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Alzheimer’s disease-related technology developed by scientists at Washington University School of Medicine in St. Louis to detect amyloid beta and other Alzheimer’s disease-related proteins in the brains of mice. The School of Medicine’s John R. Cirrito, PhD, a professor of neurology, and Carla M. Yuede, PhD, an associate professor of psychiatry — both also co-corresponding authors on the study — used a nanobody, an antibody from llamas, to detect the virus that causes COVID-19.

Chakrabarty and Cirrito said the breath test could be modified to simultaneously detect other viruses, including influenza and respiratory syncytial virus (RSV). They also believe they can develop a biodetector for any newly emerging pathogen within two weeks of receiving samples of it.

“It’s a bit like a breathalyzer test that an impaired driver might be given,” Cirrito said. “And, for example, if people are in line to enter a hospital, a sports arena or the White House Situation Room, 15-minute nasal swab tests aren’t practical, and PCR tests take even longer. Plus, home tests are about 60% to 70% accurate, and they produce a lot of false negatives. This device will have diagnostic accuracyHow close the measured value conforms to the correct value.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>accuracy.”

Development Journey

The researchers began working on the breath test device — made with 3D printers — after receiving a grant from the National Institutes of HealthThe National Institutes of Health (NIH) is the primary agency of the United States government responsible for biomedical and public health research. Founded in 1887, it is a part of the U.S. Department of Health and Human Services. The NIH conducts its own scientific research through its Intramural Research Program (IRP) and provides major biomedical research funding to non-NIH research facilities through its Extramural Research Program. With 27 different institutes and centers under its umbrella, the NIH covers a broad spectrum of health-related research, including specific diseases, population health, clinical research, and fundamental biological processes. Its mission is to seek fundamental knowledge about the nature and behavior of living systems and the application of that knowledge to enhance health, lengthen life, and reduce illness and disability.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>National Institutes of Health (NIH) in August 2020, during the first year of the pandemic. Since receiving the grant, they’ve tested prototypes in the laboratory and in the Washington University Infectious Diseases Clinical Research Unit. The team continues to test the device, to further improve its efficacy at detecting the virus in people.

For the study, the research team tested COVID-positive individuals, each of whom exhaled into the device two, four, or eight times. The breath test produced no false negatives and gave accurate reads after two breaths from each person tested. The clinical study is ongoing to test COVID-positive and -negative individuals to further test and optimize the device.

Strain Detection and Operation

The researchers also found that the breath test successfully detected several different strains of SARS-CoV-2Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the official name of the virus strain that causes coronavirus disease (COVID-19). Previous to this name being adopted, it was commonly referred to as the 2019 novel coronavirus (2019-nCoV), the Wuhan coronavirus, or the Wuhan virus.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>SARS-CoV-2, including the original strain and the omicron variant, and their clinical studies are measuring active strains in the St. Louis area.

To conduct the breath test, the researchers insert a straw into the device. A patient blows into the straw, and then aerosols from the person’s breath collect on a biosensor inside the device. The device then is plugged into a small machine that reads signals from the biosensor, and in less than a minute, the machine reveals a positive or negative finding of COVID-19.

Future Prospects

Clinical studies are continuing, and the researchers soon plan to employ the device in clinics beyond Washington University’s Infectious Diseases Clinical Research Unit. In addition, Y2X Life Sciences, a New York-based company, has an exclusive option to license the technology. That company has consulted with the research team from the beginning of the project and during the device’s design stages to facilitate possible commercialization of the test in the future.

Reference: “Rapid Direct Detection of SARS-CoV-2 Aerosols in Exhaled Breath at the Point of Care” by Dishit P. Ghumra, Nishit Shetty, Kevin R. McBrearty, Joseph V. Puthussery, Benjamin J. Sumlin, Woodrow D. Gardiner, Brookelyn M. Doherty, Jordan P. Magrecki, David L. Brody, Thomas J. Esparza, Jane A. O’Halloran, Rachel M. Presti, Traci L. Bricker, Adrianus C. M. Boon, Carla M. Yuede, John R. Cirrito and Rajan K. Chakrabarty, 27 July 2023, ACS Sensors.
DOI: 10.1021/acssensors.3c00512

The study was funded by the National Institutes of Health (NIH) RADx-Rad program. Grant numbers U01 AA029331 and U01 AA029331-S1. Additional funding from the National Institute of Neurological Disorders and Stroke Intramural Research Program, the Uniformed Services University of Health Sciences, and the NIH SARS-CoV-2 Assessment of Viral Evolution (SAVE) Program.

Source: SciTechDaily