Press "Enter" to skip to content

Pivotal Discovery Signals a Huge Leap Forward in Fusion Energy Reactor Progress

A team of researchers has introduced a method to mitigate damaging runaway electrons in tokamak fusion devices. The strategy harnesses Alfvén waves to disrupt the damaging cycle of runaway electrons. This discovery holds promise for the advancement of fusion energy, with potential implications for the ongoing ITER project in France.

Researchers have utilized Alfvén waves to mitigate runaway electrons in tokamak fusion devices, offering significant implications for future fusion energy projects, including the ITER in France.

Scientists led by Chang Liu of the Princeton Plasma Physics Laboratory (PPPLThe U.S. Department of Energy’s Princeton Plasma Physics Laboratory (PPPL) is a collaborative national laboratory for plasma physics and nuclear fusion science. Its primary mission is research into and development of fusion as an energy source for the world.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>PPPL) have unveiled a promising approach to mitigating damaging runaway electrons created by disruptions in tokamak fusion devices. Key to the approach was harnessing a unique type of plasmaPlasma is one of the four fundamental states of matter, along with solid, liquid, and gas. It is an ionized gas consisting of positive ions and free electrons. It was first described by chemist Irving Langmuir in the 1920s.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>plasma wave that bears the name of astrophysicist Hannes Alfvén, a 1970 Nobel laureate.

Alfvén waves have long been known to loosen the confinement of high-energy particles in tokamak reactors, allowing some to escape and reducing the efficiency of the doughnut-shaped devices. However, the new findings by Chang Liu and researchers at General Atomics, Columbia University, and PPPL uncovered beneficial results in the case of runaway electrons.

Remarkable Circular Process

The scientists found that such loosening can diffuse or scatter high-energy electrons before they can grow into avalanches that damage tokamak components. This process was determined to be remarkably circular: The runaways create instabilities that give rise to Alfvén waves that keep the avalanche from forming.

“These discoveries provide a comprehensive explanation for the direct observation of Alfvén waves in disruption experiments,” said Liu, a staff researcher at PPPL and lead author of a paper that details the results in Physical Review LettersPhysical Review Letters (PRL) is a peer-reviewed scientific journal published by the American Physical Society. It is one of the most prestigious and influential journals in physics, with a high impact factor and a reputation for publishing groundbreaking research in all areas of physics, from particle physics to condensed matter physics and beyond. PRL is known for its rigorous standards and short article format, with a maximum length of four pages, making it an important venue for rapid communication of new findings and ideas in the physics community.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Physical Review Letters. “The findings establish a distinct link between these modes and the generation of runaway electrons.”

Chang Liu

Chang Liu. Credit: Elle Starkman

Researchers derived a theory for the remarkable circularity of these interactions. The results aligned well with runaways in experiments on the DIII-D National Fusion Facility, a DOE tokamak that General Atomics operates for the Office of Science. Tests of the theory also proved positive on the Summit supercomputer at Oak Ridge National Laboratory.

“Chang Liu’s work shows that the runaway electron population size can be controlled by instabilities driven by the runaway electrons themselves,” said Felix Parra Diaz, head of the Theory Department at PPPL. “His research is very exciting because it might lead to tokamak designs that naturally mitigate runaway electron damage through inherent instabilities.”

Thermal Quenches

Disruptions start with sharp drops in the million-degree temperatures required for fusion reactions. These drops, called “thermal quenches,” release avalanches of runaways similar to earthquake-produced landslides. “Controlling disruptions stands as a paramount challenge to the success of tokamaks,” Liu said.

Fusion reactions combine light elements in the form of plasma — the hot, charged state of matter composed of free electrons and atomic nuclei called ions — to release the vast energy that powers the sun and stars. Mitigating the risk of disruptions and runaway electrons would thus provide a singular benefit for tokamak facilities designed to reproduce the process.

Mitigating the risk of disruptions and runaway electrons would thus provide a singular benefit for tokamak facilities designed to reproduce the process.

ITER Nuclear Fusion Reactor

Nuclear fusion energy could be a pivotal sustainable energy source to complement renewables. The world’s largest fusion experiment, ITER, is being built in France. Credit: ITER Organization

The new approach could have implications for the advancement of ITER, the international tokamak under construction in France to demonstrate the practicality of fusion energy and could mark a key step in the development of fusion power plants.

“Our findings set the stage for creating fresh strategies to mitigate runaway electrons,” Liu said. Now in the planning stage are experimental campaigns in which all three research centers aim to further develop the striking runaway findings.

Source: SciTechDaily