Press "Enter" to skip to content

Quartz Showers: Silica Snow Envelops the Fiery Atmosphere of Hot Jupiter Exoplanet

This artist’s concept shows what the exoplanet WASP-17 b could look like. WASP-17 b, also called Ditsö̀, is a hot gas giant that orbits its star at a distance of just 0.051 AU (about 4.75 million miles, or one-eighth the distance between Mercury and the Sun), completing one full circuit in about 3.7 Earth-days. The system lies within the Milky Way, about 1,300 light-years from Earth, in the constellation Scorpius. With a volume more than seven times that of Jupiter and a mass less than one-half of Jupiter, WASP-17 b is an extremely puffy planet. Its short orbital period, large size, and thick, extended atmosphere make it ideal for observation using transmission spectroscopy, which involves measuring the effects of the planet’s atmosphere on the starlight filtering through it. Credit: NASA, ESA, CSA, Ralf Crawford (STScI)

Flakes of silica “snow” fill the skies of puffy, searing-hot exoplanet WASP-17 b.

Catching a glimpse of one of the most common and familiar minerals on Earth rarely merits a headline. Quartz is found in beach sands, building stones, geodes, and gem shops around the world. It’s melted to produce glass, refined for silicon microchips, and used in watches to keep time.

So what’s so special about the latest discovery from NASAEstablished in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is "To discover and expand knowledge for the benefit of humanity." Its core values are "safety, integrity, teamwork, excellence, and inclusion." NASA conducts research, develops technology and launches missions to explore and study Earth, the solar system, and the universe beyond. It also works to advance the state of knowledge in a wide range of scientific fields, including Earth and space science, planetary science, astrophysics, and heliophysics, and it collaborates with private companies and international partners to achieve its goals.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>NASA’s James Webb Space TelescopeThe James Webb Space Telescope (JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope. It covers longer wavelengths of light, with greatly improved sensitivity, allowing it to see inside dust clouds where stars and planetary systems are forming today as well as looking further back in time to observe the first galaxies that formed in the early universe.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>James Webb Space Telescope? Imagine quartz crystals that appear quite literally out of thin air. A mist of glittering grains so small that 10,000 could fit side-by-side across a human hair. Swarms of pointy, glassy nanoparticles racing through the sweltering atmosphere of a puffy gas giant exoplanetAn exoplanet (or extrasolar planet) is a planet that is located outside our Solar System, orbiting around a star other than the Sun. The first suspected scientific detection of an exoplanet occurred in 1988, with the first confirmation of detection coming in 1992.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>exoplanet at thousands of miles per hour.

Webb’s unique ability to measure the extremely subtle effects of those crystals on starlight – and from a distance of more than seven million billion miles, no less – is providing critical information about the composition of exoplanet atmospheres and new insights into their weather.

Exoplanet WASP-17 b (Webb MIRI Transmission Spectrum)

A transmission spectrum of the hot gas giant exoplanet WASP-17 b captured by MIRI (Webb’s Mid-Infrared Instrument) on March 12-13, 2023, reveals the first evidence for quartz (crystalline silica, SiO2) in the clouds of an exoplanet.
The spectrum was made by measuring the change in brightness of 28 wavelength-bands of mid-infrared light as the planet transited its star. Webb observed the WASP-17 system using MIRI’s low-resolution spectrograph for nearly 10 hours, collecting more than 1,275 measurements before, during, and after the transit.
For each wavelength, the amount of light blocked by the planet’s atmosphere (white circles) was calculated by subtracting the amount that made it through the atmosphere from the amount originally emitted by the star.
The solid purple line is a best-fit model to the Webb (MIRI), Hubble, and Spitzer data. (The Hubble and Spitzer data cover wavelengths from 0.34 to 4.5 microns and are not shown on the graph.) The spectrum shows a clear feature around 8.6 microns, which astronomers think is caused by silica particles absorbing some of the starlight passing through the atmosphere.
The dashed yellow line shows what that part of the transmission spectrum would look like if the clouds in WASP-17 b’s atmosphere did not contain SiO2.
This marks the first time that SiO2 has been identified in an exoplanet, and the first time any specific cloud species has been identified in a transiting exoplanet.
Credit: NASA, ESA, CSA, Ralf Crawford (STScI), David Grant (University of Bristol), Hannah R. Wakeford (University of Bristol), Nikole Lewis (Cornell University)

Webb Space Telescope Detects Tiny Quartz Crystals in Clouds of Hot Gas Giant

Researchers using NASA’s James Webb Space Telescope have detected evidence for quartz nanocrystals in the high-altitude clouds of WASP-17 b, a hot JupiterJupiter is the largest planet in the solar system and the fifth planet from the sun. It is a gas giant with a mass greater then all of the other planets combined. Its name comes from the Roman god Jupiter.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Jupiter exoplanet 1,300 light-years from Earth. The detection, which was uniquely possible with MIRI (Webb’s Mid-Infrared Instrument), marks the first time that silica (SiO2) particles have been spotted in an exoplanet atmosphere.

“We were thrilled!” said David Grant, a researcher at the University of BristolThe University of Bristol, a red brick research university in Bristol, England, received its royal charter in 1909. However, it can trace its history back to 1876 (as University College, Bristol) and 1595 (as Merchant Venturers School). It is organized into six academic faculties composed of multiple schools and departments running over 200 undergraduate courses.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>University of Bristol in the UK and first author on a paper that was published today (October 16) in the Astrophysical Journal LettersThe Astrophysical Journal Letters (ApJL) is a peer-reviewed scientific journal that focuses on the rapid publication of short, significant letters and papers on all aspects of astronomy and astrophysics. It is one of the journals published by the American Astronomical Society (AAS), and is considered one of the most prestigious journals in the field.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Astrophysical Journal Letters. “We knew from Hubble observations that there must be aerosols – tiny particles making up clouds or haze – in WASP-17 b’s atmosphere, but we didn’t expect them to be made of quartz.”

Silicates (minerals rich in silicon and oxygen) make up the bulk of Earth and the Moon as well as other rocky objects in our solar system, and are extremely common across the galaxy. But the silicate grains previously detected in the atmospheres of exoplanets and brown dwarfs appear to be made of magnesium-rich silicates like olivine and pyroxene, not quartz alone – which is pure SiO2.

The result from this team, which also includes researchers from NASA’s Ames Research Center and NASA’s Goddard Space Flight Center, puts a new spin on our understanding of how exoplanet clouds form and evolve. “We fully expected to see magnesium silicates,” said co-author Hannah Wakeford, also from the University of Bristol. “But what we’re seeing instead are likely the building blocks of those, the tiny ‘seed’ particles needed to form the larger silicate grains we detect in cooler exoplanets and brown dwarfs.”

Detecting Subtle Variations

With a volume more than seven times that of Jupiter and a mass less than one-half of Jupiter, WASP-17 b is one of the largest and puffiest known exoplanets. This, along with its short orbital period of just 3.7 Earth-days, makes the planet ideal for transmission spectroscopy: a technique that involves measuring the filtering and scattering effects of a planet’s atmosphere on starlight.

Webb observed the WASP-17 system for nearly 10 hours, collecting more than 1,275 brightness measurements of 5- to 12-micron mid-infrared light as the planet crossed its star. By subtracting the brightness of individual wavelengths of light that reached the telescope when the planet was in front of the star from those of the star on its own, the team was able to calculate the amount of each wavelength blocked by the planet’s atmosphere.

What emerged was an unexpected “bump” at 8.6 microns, a feature that would not be expected if the clouds were made of magnesium silicates or other possible high-temperature aerosols like aluminum oxide, but which makes perfect sense if they are made of quartz.

Crystals, Clouds, and Winds

While these crystals are probably similar in shape to the pointy hexagonal prisms found in geodes and gem shops on Earth, each one is only about 10 nanometers across – one-millionth of one centimeter.

“Hubble data actually played a key role in constraining the size of these particles,” explained co-author Nikole Lewis of Cornell University, who leads the Webb Guaranteed Time Observation (GTO) program designed to help build a three-dimensional view of a hot Jupiter atmosphere. “We know there is silica from Webb’s MIRI data alone, but we needed the visible and near-infrared observations from Hubble for context, to figure out how large the crystals are.”

Unlike mineral particles found in clouds on Earth, the quartz crystals detected in the clouds of WASP-17 b are not swept up from a rocky surface. Instead, they originate in the atmosphere itself. “WASP-17 b is extremely hot – around 2,700 degrees FahrenheitThe Fahrenheit scale is a temperature scale, named after the German physicist Daniel Gabriel Fahrenheit and based on one he proposed in 1724. In the Fahrenheit temperature scale, the freezing point of water freezes is 32 °F and water boils at 212 °F, a 180 °F separation, as defined at sea level and standard atmospheric pressure. ” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Fahrenheit (1,500 degrees CelsiusThe Celsius scale, also known as the centigrade scale, is a temperature scale named after the Swedish astronomer Anders Celsius. In the Celsius scale, 0 °C is the freezing point of water and 100 °C is the boiling point of water at 1 atm pressure.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Celsius) – and the pressure where the quartz crystals form high in the atmosphere is only about one-thousandth of what we experience on Earth’s surface,” explained Grant. “In these conditions, solid crystals can form directly from gas, without going through a liquid phase first.”

Understanding what the clouds are made of is crucial for understanding the planet as a whole. Hot Jupiters like WASP-17 b are made primarily of hydrogen and helium, with small amounts of other gases like water vapor (H2O) and carbon dioxide (CO2). “If we only consider the oxygen that is in these gases, and neglect to include all of the oxygen locked up in minerals like quartz (SiO2), we will significantly underestimate the total abundance,” explained Wakeford. “These beautiful silica crystals tell us about the inventory of different materials and how they all come together to shape the environment of this planet.”

Exactly how much quartz there is, and how pervasive the clouds are, is hard to determine. “The clouds are likely present along the day/night transition (the terminator), which is the region that our observations probe,” said Grant. Given that the planet is tidally locked with a very hot day side and cooler night side, it is likely that the clouds circulate around the planet, but vaporize when they reach the hotter day side. “The winds could be moving these tiny glassy particles around at thousands of miles per hour.”

WASP-17 b is one of three planets targeted by the JWST Telescope Scientist Team’s Deep Reconnaissance of Exoplanet Atmospheres using Multi-instrument Spectroscopy (DREAMS) investigations, which are designed to gather a comprehensive set of observations of one representative from each key class of exoplanets: a hot Jupiter, a warm NeptuneNeptune is the farthest planet from the sun. In our solar system, it is the fourth-largest planet by size, and third densest. It is named after the Roman god of the sea.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Neptune, and a temperate rocky planet. The MIRI observations of hot Jupiter WASP-17 b were made as part of GTO program 1353.

Reference: “JWST-TST DREAMS: Quartz Clouds in the Atmosphere of WASP-17b” by David Grant, Nikole K. Lewis, Hannah R. Wakeford, Natasha E. Batalha, Ana Glidden, Jayesh Goyal, Elijah Mullens, Ryan J. MacDonald, Erin M. May, Sara Seager, Kevin B. Stevenson, Jeff A. Valenti, Channon Visscher, Lili Alderson, Natalie H. Allen, Caleb I. Cañas, Knicole Colón, Mark Clampin, Néstor Espinoza, Amélie Gressier, Jingcheng Huang, Zifan Lin, Douglas Long, Dana R. Louie, Maria Peña-Guerrero, Sukrit Ranjan, Kristin S. Sotzen, Daniel Valentine, Jay Anderson, William O. Balmer, Andrea Bellini, Kielan K. W. Hoch, Jens Kammerer, Mattia Libralato, C. Matt Mountain, Marshall D. Perrin, Laurent Pueyo, Emily Rickman, Isabel Rebollido, Sangmo Tony Sohn, Roeland P. van der Marel and Laura L. Watkins, 16 October 2023, The Astrophysical Journal Letters.
DOI: 10.3847/2041-8213/acfc3b

The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space AgencyThe European Space Agency (ESA) is an intergovernmental organization dedicated to the exploration and study of space. ESA was established in 1975 and has 22 member states, with its headquarters located in Paris, France. ESA is responsible for the development and coordination of Europe's space activities, including the design, construction, and launch of spacecraft and satellites for scientific research and Earth observation. Some of ESA's flagship missions have included the Rosetta mission to study a comet, the Gaia mission to create a 3D map of the Milky Way, and the ExoMars mission to search for evidence of past or present life on Mars.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>European Space Agency) and the Canadian Space Agency.

Source: SciTechDaily