Press "Enter" to skip to content

The James Webb Space Telescope: Prepare for a New Way To See the Universe

The James Webb Space Telescope (JWST) is the next of NASA’s Great Observatories; following in the line of the Hubble Space Telescope, the Compton Gamma-ray Observatory, the Chandra X-ray Observatory, and the Spitzer Space Telescope. JWST combines the qualities of two of its predecessors, observing in infrared light, like Spitzer, with fine resolution, like Hubble. Credit: NASA, SkyWorks Digital, Northrop Grumman, STScI

NASAEstablished in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. It's vision is "To discover and expand knowledge for the benefit of humanity."” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>NASA’s James Webb Space TelescopeThe James Webb Space Telescope (JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope. It covers longer wavelengths of light, with greatly improved sensitivity, allowing it to see inside dust clouds where stars and planetary systems are forming today as well as looking further back in time to observe the first galaxies that formed in the early universe.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>James Webb Space Telescope is finally ready to do science – and it’s seeing the universe more clearly than even its own engineers hoped for.

NASA is scheduled to release the first images taken by the James Webb Space Telescope on July 12, 2022. They’ll mark the beginning of the next era in astronomy as Webb – the largest space telescope ever built – begins collecting scientific data that will help answer questions about the earliest moments of the universe and allow astronomers to study exoplanets in greater detail than ever before. But it has taken nearly eight months of travel, setup, testing, and calibration to make sure this most valuable of telescopes is ready for prime time. Marcia Rieke, an astronomer at the University of Arizona and the scientist in charge of one of Webb’s four cameras, explains what she and her colleagues have been doing to get this telescope up and running.

[embedded content]

1. What’s happened since the telescope launched?

After the successful launch of the James Webb Space Telescope on December 25, 2021, the team began the long process of moving the telescope into its final orbital position, unfolding the telescope and – as everything cooled – calibrating the cameras and sensors onboard.

The launch went as smoothly as a rocket launch can go. One of the first things my colleagues at NASA noticed was that the telescope had more remaining fuel onboard than predicted to make future adjustments to its orbit. This will allow Webb to operate for much longer than the mission’s initial 10-year goal.

The first task during Webb’s monthlong journey to its final location in orbit was to unfold the telescope. This went along without any hitches, starting with the white-knuckle deployment of the sun shield that helps cool the telescope, followed by the alignment of the mirrors and the turning on of sensors.

Once the sun shield was open, our team began monitoring the temperatures of the four cameras and spectrometers onboard, waiting for them to reach temperatures low enough so that we could start testing each of the 17 different modes in which the instruments can operate.

Source: SciTechDaily