Press "Enter" to skip to content

Unlocking Fundamental Mysteries: Using Near-Miss Particle Physics to Peer Into Quantum World

The Large Hadron Collider at CERN can be used to study many kinds of fundamental particles, including mysterious and rare tau particles.

In a breakthrough at CERNEstablished in 1954 and headquartered in Geneva, Switzerland, CERN is a European research organization that operates the Large Hadron Collider (LHC), the largest particle physics laboratory in the world. Its full name is the European Organization for Nuclear Research (French: Organisation européenne pour la recherche nucléaire) and the CERN acronym comes from the French Conseil Européen pour la Recherche Nucléaire. CERN's main mission is to study the fundamental structure of the universe through the use of advanced particle accelerators and detectors. ” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>CERN, scientists measured the elusive tau particle’s magnetic moment using near-miss particle interactions in the Large Hadron Collider. This method, marking a significant advancement in particle physics, has the potential to reveal unknown aspects of the universe’s fundamental nature.

One way physicists seek clues to unravel the mysteries of the universe is by smashing matter together and inspecting the debris. But these types of destructive experiments, while incredibly informative, have limits.

We are two scientists who study nuclear and particle physics using CERN’s Large Hadron Collider near Geneva, Switzerland. Working with an international group of nuclear and particle physicists, our team realized that hidden in the data from previous studies was a remarkable and innovative experiment.

A Novel Approach to Measuring Particle Wobble

In a new paper published in the journal Physical Review LettersPhysical Review Letters (PRL) is a peer-reviewed scientific journal published by the American Physical Society. It is one of the most prestigious and influential journals in physics, with a high impact factor and a reputation for publishing groundbreaking research in all areas of physics, from particle physics to condensed matter physics and beyond. PRL is known for its rigorous standards and short article format, with a maximum length of four pages, making it an important venue for rapid communication of new findings and ideas in the physics community.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>Physical Review Letters, we developed a new method with our colleagues for measuring how fast a particle called the tau wobbles.

Our novel approach looks at the times incoming particles in the accelerator whiz by each other rather than the times they smash together in head-on collisions. Surprisingly, this approach enables far more accurate measurements of the tau particle’s wobble than previous techniques. This is the first time in nearly 20 years scientists have measured this wobble, known as the tau magnetic moment, and it may help illuminate tantalizing cracks emerging in the known laws of physics.

Source: SciTechDaily