Press "Enter" to skip to content

Unveiling the Secrets of Alien Worlds: The Jurassic-Era Clue That Could Be Key to Finding Habitable Exoplanets

Cornell University astronomers have found that the atmospheric conditions during the dinosaur era on Earth could help us detect signs of life on exoplanets. The study suggests that biosignatures like oxygen and methane were more detectable during this period, providing a better template for identifying habitable planets. With this new model, scientists can refine their search for complex life forms in the cosmos, utilizing the transmission spectra from Earth’s past as a guide.

Things may not have ended well for dinosaurs on Earth, but Cornell University astronomers say the “light fingerprint” of the conditions that enabled them to emerge here provide a crucial missing piece in our search for signs of life on planets orbiting alien stars.

Their analysis of the most recent 540 million years of Earth’s evolution, known as the Phanerozoic Eon, finds that telescopes could better detect potential chemical signatures of life in the atmosphere of an Earth-like exoplanetAn exoplanet (or extrasolar planet) is a planet that is located outside our Solar System, orbiting around a star other than the Sun. The first suspected scientific detection of an exoplanet occurred in 1988, with the first confirmation of detection coming in 1992.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>exoplanet more closely resembling the age the dinosaurs inhabited than the one we know today.

Two key biosignature pairs – oxygen and methane, and ozone and methane – appeared stronger in models of Earth roughly 100 million to 300 million years ago, when oxygen levels were significantly higher. The models simulated the transmission spectra, or light fingerprint, generated by an atmosphere that absorbs some colors of starlight and lets others filter through, information scientists use to determine the atmosphere’s composition.

The Changing Atmospheric Signatures Through Time

“Modern Earth’s light fingerprint has been our template for identifying potentially habitable planets, but there was a time when this fingerprint was even more pronounced – better at showing signs of life,” said Lisa Kaltenegger, director of the Carl Sagan Institute (CSI) and associate professor of astronomy. “This gives us hope that it might be just a little bit easier to find signs of life – even large, complex life – elsewhere in the cosmos.”

Kaltenegger is co-author of “Oxygen Bounty for Earth-like Exoplanets: Spectra of Earth Through the Phanerozoic,” published in Monthly Notices of the Royal Astronomical Society: Letters. First author, Rebecca Payne, research associate at CSI, led the new models that details a critical epoch including the origins of land plants, animals and dinosaurs.

Using estimates from two established climate models (called GEOCARB and COPSE), the researchers simulated Earth’s atmospheric composition and resulting transmission spectra over five 100-million-year increments of the Phanerozoic. Each features significant changes as a complex ocean biosphere diversified, forests proliferated and terrestrial biospheres flourished, influencing the mix of oxygen and other gasses in the atmosphere.

“It’s only the most recent 12% or so of Earth’s history, but it encompasses pretty much all of the time in which life was more complex than sponges,” said Payne. “These light fingerprints are what you’d search for elsewhere, if you were looking for something more advanced than a single-celled organism.”

Implications for Exoplanet Exploration

While similar evolutionary processes may or may not unfold on exoplanets, Payne and Kaltenegger said their models fill in a missing puzzle piece of what a Phanerozoic would look like to a telescope, creating new templates for habitable planets with varying atmospheric oxygen levels.

Kaltenegger pioneered modeling of what Earth would look like to faraway observers based on changes over time in its geology, climate and atmosphere – our “ground truth,” she said, for identifying potential evidence of life on other worlds.

To date, about 35 rocky exoplanets have been discovered in habitable zones where liquid water could exist, Kaltenegger said. Analyzing an exoplanet’s atmosphere – if it has one – is at the edge of technical capability for NASAEstablished in 1958, the National Aeronautics and Space Administration (NASA) is an independent agency of the United States Federal Government that succeeded the National Advisory Committee for Aeronautics (NACA). It is responsible for the civilian space program, as well as aeronautics and aerospace research. Its vision is "To discover and expand knowledge for the benefit of humanity." Its core values are "safety, integrity, teamwork, excellence, and inclusion." NASA conducts research, develops technology and launches missions to explore and study Earth, the solar system, and the universe beyond. It also works to advance the state of knowledge in a wide range of scientific fields, including Earth and space science, planetary science, astrophysics, and heliophysics, and it collaborates with private companies and international partners to achieve its goals.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>NASA’s James Webb Space TelescopeThe James Webb Space Telescope (JWST or Webb) is an orbiting infrared observatory that will complement and extend the discoveries of the Hubble Space Telescope. It covers longer wavelengths of light, with greatly improved sensitivity, allowing it to see inside dust clouds where stars and planetary systems are forming today as well as looking further back in time to observe the first galaxies that formed in the early universe.” data-gt-translate-attributes=”[{“attribute”:”data-cmtooltip”, “format”:”html”}]”>James Webb Space Telescope but is now a possibility. But, the researchers said, scientists need to know what to look for. Their models identify planets like Phanerozoic Earth as the most promising targets for finding life in the cosmos.

They also allow scientists to entertain the possibility – purely theoretical – that if a habitable exoplanet is discovered to have an atmosphere with 30% oxygen, life there might not be limited to microbes, but could include creatures as large and varied as the megalosauruses or microraptors that once roamed Earth.

“If they’re out there,” Payne said, “this sort of analysis lets us figure out where they could be living.”

Dinosaurs or not, the models confirm that from a great distance, such a planet’s light fingerprint would stand out more than a modern Earth’s.

“Hopefully we’ll find some planets that happen to have more oxygen than Earth right now, because that will make the search for life just a little bit easier,” Kaltenegger said. “And who knows, maybe there are other dinosaurs waiting to be found.”

Reference: “Oxygen bounty for Earth-like exoplanets: spectra of Earth through the Phanerozoic” by R C Payne and L Kaltenegger, 13 October 2023, Monthly Notices of the Royal Astronomical Society: Letters.
DOI: 10.1093/mnrasl/slad147

The authors thanked the Carl Sagan Institute and the Brinson Foundation for supporting the research.

Source: SciTechDaily